Learning MCMs¶
Utility functions and Environment setup¶
-
Joint instrument per shot:
\[ p_s^{(o,s')} :=\text{Prob}(\text{outcome}=o,\ \text{post-meas state}=s'\mid \text{pre-state}=s), \quad s,o,s'\in\{0,1\}, \]with column normalization \(\sum_{o,s'}p_s^{(o,s')}=1\) for each \(s\) (⇒ 6 Degrees of Freedom in total).
-
Outcome-indexed operators (“observable operators”)
\[ M^{(o)} \in \mathbb{R}_{\ge 0}^{2\times 2},\quad [M^{(o)}]_{s',s}=p_s^{(o,s')}. \]Note: columns of \(M^{(o)}\) sum to \(A^{(o)}_s=\sum_{s'}p_s^{(o,s')}\) (not 1). The two \(M\) matrices explicitly are:
\[ M^{(o=0)} = \begin{pmatrix} p_0^{(0, 0)} & p_1^{(0, 0)} \\ p_0^{(0, 1)} & p_1^{(0, 1)} \end{pmatrix} \text{ , } M^{(o=1)} = \begin{pmatrix} p_0^{(1, 0)} & p_1^{(1, 0)} \\ p_0^{(1, 1)} & p_1^{(1, 1)} \end{pmatrix} \]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | |
🟢 Gauge Continuum Characterization¶
Symbolic and Numeric Gauge Transformation¶
1 | |
\(\displaystyle \left[\begin{matrix}a & e\\b & f\end{matrix}\right]\)
\(\displaystyle \left[\begin{matrix}c & g\\- a - b - c + 1 & - e - f - g + 1\end{matrix}\right]\)
1 2 3 4 5 6 7 8 | |
\(\displaystyle \left[\begin{matrix}t \left(\frac{e \left(t - 1\right)}{2 t - 1} + \frac{f t}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{a \left(t - 1\right)}{2 t - 1} + \frac{b t}{2 t - 1}\right) & t \left(\frac{a \left(t - 1\right)}{2 t - 1} + \frac{b t}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{e \left(t - 1\right)}{2 t - 1} + \frac{f t}{2 t - 1}\right)\\t \left(\frac{e t}{2 t - 1} + \frac{f \left(t - 1\right)}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{a t}{2 t - 1} + \frac{b \left(t - 1\right)}{2 t - 1}\right) & t \left(\frac{a t}{2 t - 1} + \frac{b \left(t - 1\right)}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{e t}{2 t - 1} + \frac{f \left(t - 1\right)}{2 t - 1}\right)\end{matrix}\right]\)
\(\displaystyle \left[\begin{matrix}t \left(\frac{g \left(t - 1\right)}{2 t - 1} + \frac{t \left(- e - f - g + 1\right)}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{c \left(t - 1\right)}{2 t - 1} + \frac{t \left(- a - b - c + 1\right)}{2 t - 1}\right) & t \left(\frac{c \left(t - 1\right)}{2 t - 1} + \frac{t \left(- a - b - c + 1\right)}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{g \left(t - 1\right)}{2 t - 1} + \frac{t \left(- e - f - g + 1\right)}{2 t - 1}\right)\\t \left(\frac{g t}{2 t - 1} + \frac{\left(t - 1\right) \left(- e - f - g + 1\right)}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{c t}{2 t - 1} + \frac{\left(t - 1\right) \left(- a - b - c + 1\right)}{2 t - 1}\right) & t \left(\frac{c t}{2 t - 1} + \frac{\left(t - 1\right) \left(- a - b - c + 1\right)}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{g t}{2 t - 1} + \frac{\left(t - 1\right) \left(- e - f - g + 1\right)}{2 t - 1}\right)\end{matrix}\right]\)
1 | |
\(\displaystyle \left[\begin{matrix}\frac{t \left(e \left(t - 1\right) + f t\right) - \left(t - 1\right) \left(a \left(t - 1\right) + b t\right)}{2 t - 1} & \frac{t \left(a \left(t - 1\right) + b t\right) - \left(t - 1\right) \left(e \left(t - 1\right) + f t\right)}{2 t - 1}\\\frac{t \left(e t + f \left(t - 1\right)\right) - \left(t - 1\right) \left(a t + b \left(t - 1\right)\right)}{2 t - 1} & \frac{t \left(a t + b \left(t - 1\right)\right) - \left(t - 1\right) \left(e t + f \left(t - 1\right)\right)}{2 t - 1}\end{matrix}\right]\)
\(\displaystyle \left[\begin{matrix}\frac{t \left(g \left(t - 1\right) - t \left(e + f + g - 1\right)\right) - \left(t - 1\right) \left(c \left(t - 1\right) - t \left(a + b + c - 1\right)\right)}{2 t - 1} & \frac{t \left(c \left(t - 1\right) - t \left(a + b + c - 1\right)\right) - \left(t - 1\right) \left(g \left(t - 1\right) - t \left(e + f + g - 1\right)\right)}{2 t - 1}\\\frac{t \left(g t - \left(t - 1\right) \left(e + f + g - 1\right)\right) - \left(t - 1\right) \left(c t - \left(t - 1\right) \left(a + b + c - 1\right)\right)}{2 t - 1} & \frac{t \left(c t - \left(t - 1\right) \left(a + b + c - 1\right)\right) - \left(t - 1\right) \left(g t - \left(t - 1\right) \left(e + f + g - 1\right)\right)}{2 t - 1}\end{matrix}\right]\)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | |
Close to ibm_pittsburgh's MCM collection¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 | |
| seed | prep_0_meas_1 | prep_1_meas_0 | |
|---|---|---|---|
| count | 3.000000 | 3.000000 | 3.000000 |
| mean | 40.000000 | 0.002717 | 0.001958 |
| std | 50.586559 | 0.001295 | 0.001522 |
| min | 5.000000 | 0.001262 | 0.000714 |
| 25% | 11.000000 | 0.002204 | 0.001110 |
| 50% | 17.000000 | 0.003145 | 0.001506 |
| 75% | 57.500000 | 0.003445 | 0.002580 |
| max | 98.000000 | 0.003745 | 0.003655 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | |
Parametrizing the MCM matrices based on learnable values & Plotting Gauge Transformations¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | |
| Quantity | Min | Max | Width | Value | Ref1 | |
|---|---|---|---|---|---|---|
| 0 | prep 0 meas 1 | 0.00003005 | 0.00127966 | 1.24961e-03 | (6.549 ± 6.248)e-4 | IN (+6.07420e-04) |
| 1 | prep 1 meas 0 | 0.00027386 | 0.00152347 | 1.24961e-03 | (8.987 ± 6.248)e-4 | IN (+6.07420e-04) |
| 2 | prep 0 excite to 1 | 0.00124865 | 0.00124973 | 1.07234e-06 | (1.249 ± 0.001)e-3 | IN (-5.21213e-07) |
| 3 | prep 1 decay to 0 | 0.00210546 | 0.00210653 | 1.07234e-06 | (2.106 ± 0.001)e-3 | IN (+5.21213e-07) |
1 2 3 | |
| Entry | Min | Max | Width | Value | Ref1 | |
|---|---|---|---|---|---|---|
| 0 | M^0[0,0] = p_0^(0,0) | 0.99871989 | 0.99872034 | 4.49770e-07 | (9.987 ± 0.000)e-1 | IN (+2.01820e-07) |
| 1 | M^0[0,1] = p_1^(0,0) | 0.00009060 | 0.00134032 | 1.24973e-03 | (7.155 ± 6.249)e-4 | IN (+6.07453e-04) |
| 2 | M^0[1,0] = p_0^(0,1) | 0.00000000 | 0.00124973 | 1.24973e-03 | (6.249 ± 6.249)e-4 | IN (-6.07453e-04) |
| 3 | M^0[1,1] = p_1^(0,1) | 0.00018315 | 0.00018360 | 4.49770e-07 | (1.834 ± 0.002)e-4 | IN (-2.01820e-07) |
| 4 | M^1[0,0] = p_0^(1,0) | 0.00003005 | 0.00003106 | 1.01727e-06 | (3.056 ± 0.051)e-5 | IN (+4.58425e-07) |
| 5 | M^1[0,1] = p_1^(1,0) | 0.00076621 | 0.00201486 | 1.24865e-03 | (1.391 ± 0.624)e-3 | IN (-6.06932e-04) |
| 6 | M^1[1,0] = p_0^(1,1) | -0.00000000 | 0.00124865 | 1.24865e-03 | (6.243 ± 6.243)e-4 | IN (+6.06932e-04) |
| 7 | M^1[1,1] = p_1^(1,1) | 0.99771026 | 0.99771128 | 1.01727e-06 | (9.977 ± 0.000)e-1 | IN (-4.58425e-07) |
1 2 3 4 5 6 7 8 9 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | |
1 2 3 | |
| Quantity | Min | Max | Width | Value | Ref1 | |
|---|---|---|---|---|---|---|
| 0 | prep 0 meas 1 | 0.00003005 | 0.00127966 | 1.24961e-03 | (6.549 ± 6.248)e-4 | IN (+6.07420e-04) |
| 1 | prep 1 meas 0 | 0.00027386 | 0.00152347 | 1.24961e-03 | (8.987 ± 6.248)e-4 | IN (+6.07420e-04) |
| 2 | prep 0 excite to 1 | 0.00124865 | 0.00124973 | 1.07234e-06 | (1.249 ± 0.001)e-3 | IN (-5.21213e-07) |
| 3 | prep 1 decay to 0 | 0.00210546 | 0.00210653 | 1.07234e-06 | (2.106 ± 0.001)e-3 | IN (+5.21213e-07) |
1 2 3 | |
| Entry | Min | Max | Width | Value | Ref1 | |
|---|---|---|---|---|---|---|
| 0 | M^0[0,0] = p_0^(0,0) | 0.99871989 | 0.99872034 | 4.49770e-07 | (9.987 ± 0.000)e-1 | IN (+2.01820e-07) |
| 1 | M^0[0,1] = p_1^(0,0) | 0.00009060 | 0.00134032 | 1.24973e-03 | (7.155 ± 6.249)e-4 | IN (+6.07453e-04) |
| 2 | M^0[1,0] = p_0^(0,1) | 0.00000000 | 0.00124973 | 1.24973e-03 | (6.249 ± 6.249)e-4 | IN (-6.07453e-04) |
| 3 | M^0[1,1] = p_1^(0,1) | 0.00018315 | 0.00018360 | 4.49770e-07 | (1.834 ± 0.002)e-4 | IN (-2.01820e-07) |
| 4 | M^1[0,0] = p_0^(1,0) | 0.00003005 | 0.00003106 | 1.01727e-06 | (3.056 ± 0.051)e-5 | IN (+4.58425e-07) |
| 5 | M^1[0,1] = p_1^(1,0) | 0.00076621 | 0.00201486 | 1.24865e-03 | (1.391 ± 0.624)e-3 | IN (-6.06932e-04) |
| 6 | M^1[1,0] = p_0^(1,1) | -0.00000000 | 0.00124865 | 1.24865e-03 | (6.243 ± 6.243)e-4 | IN (+6.06932e-04) |
| 7 | M^1[1,1] = p_1^(1,1) | 0.99771026 | 0.99771128 | 1.01727e-06 | (9.977 ± 0.000)e-1 | IN (-4.58425e-07) |
1 2 3 4 5 6 7 8 9 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | |
🔴 Main¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | |
1 2 3 | |
| Quantity | Min | Max | Width | Value | Ref1 | |
|---|---|---|---|---|---|---|
| 0 | prep 0 meas 1 | 0.00829104 | 0.01103694 | 2.74591e-03 | (9.664 ± 1.373)e-3 | IN (-1.19366e-03) |
| 1 | prep 1 meas 0 | 0.00684990 | 0.00959581 | 2.74591e-03 | (8.223 ± 1.373)e-3 | IN (-1.24993e-03) |
| 2 | prep 0 excite to 1 | 0.02658707 | 0.02665277 | 6.57042e-05 | (2.662 ± 0.003)e-2 | OUT below (-3.88947e-05) |
| 3 | prep 1 decay to 0 | 0.00308699 | 0.00315270 | 6.57042e-05 | (3.120 ± 0.033)e-3 | IN (+2.99946e-05) |
1 2 3 | |
| Entry | Min | Max | Width | Value | Ref1 | |
|---|---|---|---|---|---|---|
| 0 | M^0[0,0] = p_0^(0,0) | 0.96505619 | 0.96512190 | 6.57042e-05 | (9.651 ± 0.000)e-1 | IN (+1.15256e-05) |
| 1 | M^0[0,1] = p_1^(0,0) | 0.00040679 | 0.00308699 | 2.68020e-03 | (1.747 ± 1.340)e-3 | IN (-1.20100e-03) |
| 2 | M^0[1,0] = p_0^(0,1) | 0.02390687 | 0.02658707 | 2.68020e-03 | (2.525 ± 0.134)e-2 | IN (+1.18214e-03) |
| 3 | M^0[1,1] = p_1^(0,1) | 0.00644311 | 0.00650882 | 6.57042e-05 | (6.476 ± 0.033)e-3 | OUT below (-4.89266e-05) |
| 4 | M^1[0,0] = p_0^(1,0) | 0.00829104 | 0.00829296 | 1.91931e-06 | (8.292 ± 0.001)e-3 | OUT above (+2.64095e-05) |
| 5 | M^1[0,1] = p_1^(1,0) | 0.00000000 | 0.00274591 | 2.74591e-03 | (1.373 ± 1.373)e-3 | IN (+1.23100e-03) |
| 6 | M^1[1,0] = p_0^(1,1) | -0.00000000 | 0.00274591 | 2.74591e-03 | (1.373 ± 1.373)e-3 | IN (-1.22103e-03) |
| 7 | M^1[1,1] = p_1^(1,1) | 0.99040227 | 0.99040419 | 1.91931e-06 | (9.904 ± 0.000)e-1 | OUT above (+1.98916e-05) |
1 2 3 4 5 6 7 8 9 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | |
1 2 | |
1 2 3 | |
| Quantity | Min | Max | Width | Value | Ref1 | |
|---|---|---|---|---|---|---|
| 0 | prep 0 meas 1 | 0.00831800 | 0.01107388 | 2.75587e-03 | (9.696 ± 1.378)e-3 | IN (-1.22561e-03) |
| 1 | prep 1 meas 0 | 0.00682060 | 0.00957648 | 2.75587e-03 | (8.199 ± 1.378)e-3 | IN (-1.22561e-03) |
| 2 | prep 0 excite to 1 | 0.02657740 | 0.02664332 | 6.59146e-05 | (2.661 ± 0.003)e-2 | IN (-2.93333e-05) |
| 3 | prep 1 decay to 0 | 0.00308755 | 0.00315346 | 6.59146e-05 | (3.121 ± 0.033)e-3 | IN (+2.93333e-05) |
1 2 3 | |
| Entry | Min | Max | Width | Value | Ref1 | |
|---|---|---|---|---|---|---|
| 0 | M^0[0,0] = p_0^(0,0) | 0.96503868 | 0.96510460 | 6.59146e-05 | (9.651 ± 0.000)e-1 | IN (+2.89305e-05) |
| 1 | M^0[0,1] = p_1^(0,0) | 0.00039759 | 0.00308755 | 2.68996e-03 | (1.743 ± 1.345)e-3 | IN (-1.19668e-03) |
| 2 | M^0[1,0] = p_0^(0,1) | 0.02388744 | 0.02657740 | 2.68996e-03 | (2.523 ± 0.134)e-2 | IN (+1.19668e-03) |
| 3 | M^0[1,1] = p_1^(0,1) | 0.00642301 | 0.00648893 | 6.59146e-05 | (6.456 ± 0.033)e-3 | IN (-2.89305e-05) |
| 4 | M^1[0,0] = p_0^(1,0) | 0.00831800 | 0.00831994 | 1.93330e-06 | (8.319 ± 0.001)e-3 | IN (-5.63847e-07) |
| 5 | M^1[0,1] = p_1^(1,0) | 0.00000000 | 0.00275587 | 2.75587e-03 | (1.378 ± 1.378)e-3 | IN (+1.22601e-03) |
| 6 | M^1[1,0] = p_0^(1,1) | 0.00000000 | 0.00275587 | 2.75587e-03 | (1.378 ± 1.378)e-3 | IN (-1.22601e-03) |
| 7 | M^1[1,1] = p_1^(1,1) | 0.99042159 | 0.99042352 | 1.93330e-06 | (9.904 ± 0.000)e-1 | IN (+5.63847e-07) |
1 2 3 4 5 6 7 8 9 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | |
1 | |
\(\displaystyle \left[\begin{matrix}a & b\\c & d\end{matrix}\right]\)
1 | |
\(\displaystyle \left[\begin{matrix}1 - t & t\\t & 1 - t\end{matrix}\right]\)
1 | |
\(\displaystyle \left[\begin{matrix}\frac{t - 1}{2 t - 1} & \frac{t}{2 t - 1}\\\frac{t}{2 t - 1} & \frac{t - 1}{2 t - 1}\end{matrix}\right]\)
1 | |
\(\displaystyle \left[\begin{matrix}t \left(\frac{b \left(t - 1\right)}{2 t - 1} + \frac{d t}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{a \left(t - 1\right)}{2 t - 1} + \frac{c t}{2 t - 1}\right) & t \left(\frac{a \left(t - 1\right)}{2 t - 1} + \frac{c t}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{b \left(t - 1\right)}{2 t - 1} + \frac{d t}{2 t - 1}\right)\\t \left(\frac{b t}{2 t - 1} + \frac{d \left(t - 1\right)}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{a t}{2 t - 1} + \frac{c \left(t - 1\right)}{2 t - 1}\right) & t \left(\frac{a t}{2 t - 1} + \frac{c \left(t - 1\right)}{2 t - 1}\right) + \left(1 - t\right) \left(\frac{b t}{2 t - 1} + \frac{d \left(t - 1\right)}{2 t - 1}\right)\end{matrix}\right]\)
1 | |
\(\displaystyle \left[\begin{matrix}\frac{t \left(b \left(t - 1\right) + d t\right) - \left(t - 1\right) \left(a \left(t - 1\right) + c t\right)}{2 t - 1} & \frac{t \left(a \left(t - 1\right) + c t\right) - \left(t - 1\right) \left(b \left(t - 1\right) + d t\right)}{2 t - 1}\\\frac{t \left(b t + d \left(t - 1\right)\right) - \left(t - 1\right) \left(a t + c \left(t - 1\right)\right)}{2 t - 1} & \frac{t \left(a t + c \left(t - 1\right)\right) - \left(t - 1\right) \left(b t + d \left(t - 1\right)\right)}{2 t - 1}\end{matrix}\right]\)
1 2 3 4 5 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | |
🖥️ Qiskit Experiments¶
Utilities for Qiskit Experiments¶
1 | |
| Backend | Processor Type | Supported Instructions (measure_2 is mid-circ meas.) | |
|---|---|---|---|
| 0 | ibm_pittsburgh | {'family': 'Heron', 'revision': '3'} | cz, id, delay, measure, measure_2, reset, rz, sx, x, if_else |
| 1 | ibm_fez | {'family': 'Heron', 'revision': '2'} | cz, id, delay, measure, reset, rz, sx, x, if_else |
| 2 | ibm_marrakesh | {'family': 'Heron', 'revision': '2'} | cz, id, delay, measure, reset, rz, sx, x, if_else |
| 3 | ibm_torino | {'family': 'Heron', 'revision': '1'} | cz, id, delay, measure, reset, rz, sx, x, if_else |
| 4 | ibm_kingston | {'family': 'Heron', 'revision': '2'} | cz, id, delay, measure, measure_2, reset, rz, sx, x, if_else |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | |
Check Usage (quota) left¶
When you initialize the Sampler, use the mode parameter to specify the mode you want it to run in. Possible values are batch, session, or backend objects for batch, session, and job execution mode, respectively. For more information, see Introduction to Qiskit Runtime execution modes. Note that Open Plan users cannot submit session jobs.
Create Jobs¶
should change the I and Z circuits according to the instruction in https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.synthesis.OneQubitEulerDecomposer
1 2 | |
Run Jobs¶
Retrieve jobs¶
1 2 3 4 5 6 7 8 | |
Reconstruction¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | |
1 | |
1 2 3 | |
1 2 3 4 5 6 7 8 9 | |
| Quantity | Min | Max | Width | Value | |
|---|---|---|---|---|---|
| 0 | prep 0 meas 1 | 0.00020175 | 0.00048543 | 2.83679e-04 | (3.436 ± 1.418)e-4 |
| 1 | prep 1 meas 0 | 0.00017875 | 0.00046243 | 2.83679e-04 | (3.206 ± 1.418)e-4 |
| 2 | prep 0 excite to 1 | 0.00010132 | 0.00010460 | 3.27872e-06 | (1.030 ± 0.016)e-4 |
| 3 | prep 1 decay to 0 | 0.01165149 | 0.01165477 | 3.27872e-06 | (1.165 ± 0.000)e-2 |
1 2 3 | |
| Entry | Min | Max | Width | Value | |
|---|---|---|---|---|---|
| 0 | M^0[0,0] = p_0^(0,0) | 0.99979455 | 0.99979457 | 2.01313e-08 | (9.998 ± 0.000)e-1 |
| 1 | M^0[0,1] = p_1^(0,0) | -0.00028000 | 0.00000368 | 2.83679e-04 | (-1.382 ± 1.418)e-4 |
| 2 | M^0[1,0] = p_0^(0,1) | -0.00028000 | 0.00000368 | 2.83679e-04 | (-1.382 ± 1.418)e-4 |
| 3 | M^0[1,1] = p_1^(0,1) | 0.00045875 | 0.00045877 | 2.01313e-08 | (4.588 ± 0.000)e-4 |
| 4 | M^1[0,0] = p_0^(1,0) | 0.00010083 | 0.00010411 | 3.27872e-06 | (1.025 ± 0.016)e-4 |
| 5 | M^1[0,1] = p_1^(1,0) | 0.01165109 | 0.01193149 | 2.80400e-04 | (1.179 ± 0.014)e-2 |
| 6 | M^1[1,0] = p_0^(1,1) | 0.00010092 | 0.00038132 | 2.80400e-04 | (2.411 ± 1.402)e-4 |
| 7 | M^1[1,1] = p_1^(1,1) | 0.98788648 | 0.98788976 | 3.27872e-06 | (9.879 ± 0.000)e-1 |
1 2 3 4 5 6 | |
1 2 3 4 5 6 7 8 9 10 11 | |
-
Obtain the framework consistency/integrity (%) -> done.
-
use learned MCM to bound SP error
-
apply QEM using the learned SP (includes initial SP and back action of MCM) and M error models, then compare with IBM state-of-the-art QEM performance
-
Applications:
-
Superdense Coding: https://quantum.cloud.ibm.com/learning/en/courses/basics-of-quantum-information/entanglement-in-action/qiskit-implementation#superdense-coding
-
Long-range entanglement with dynamic circuits: https://quantum.cloud.ibm.com/docs/en/tutorials/long-range-entanglement?utm_source=chatgpt.com
References:
- Blog post of MCM availability on Nov 19: https://www.ibm.com/quantum/blog/utility-scale-dynamic-circuits
Additional Tasks¶
1. Obtain the framework consistency/integrity (%)¶
-
Actually we can use the MCM reconstructed from len 3 probs -> to verify the len 4 and larger ones' probs -> get the framework consistency (%)
-
RMSE for prob strings of length =3 should be same magnitude as shot noise, and RMSE for prob strings of length >3 should be slightly increasing but still close to shot noise level.
-
RMSE will also be affected by leakage errors and single-qubit gate errors.
1 2 3 4 5 | |
| String | Length | Theoretical | Empirical (ibm) | Difference | Abs Diff | Rel Error | |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0.49998850 | 0.49998850 | +5.551115e-17 | 5.551115e-17 | 0.0000% |
| 1 | 1 | 1 | 0.50001150 | 0.50001150 | +0.000000e+00 | 0.000000e+00 | 0.0000% |
| 2 | 00 | 2 | 0.49965651 | 0.49965650 | +1.005945e-08 | 1.005945e-08 | 0.0000% |
| 3 | 01 | 2 | 0.00033198 | 0.00033200 | -1.508894e-08 | 1.508894e-08 | 0.0045% |
| 4 | 10 | 2 | 0.00610324 | 0.00610325 | -1.474015e-08 | 1.474015e-08 | 0.0002% |
| ... | ... | ... | ... | ... | ... | ... | ... |
| 121 | 111011 | 6 | 0.00021904 | 0.00022100 | -1.960858e-06 | 1.960858e-06 | 0.8873% |
| 122 | 111100 | 6 | 0.00561718 | 0.00558275 | +3.442735e-05 | 3.442735e-05 | 0.6167% |
| 123 | 111101 | 6 | 0.00021960 | 0.00024700 | -2.740168e-05 | 2.740168e-05 | 11.0938% |
| 124 | 111110 | 6 | 0.00576610 | 0.00581575 | -4.965179e-05 | 4.965179e-05 | 0.8537% |
| 125 | 111111 | 6 | 0.47041635 | 0.47038950 | +2.684994e-05 | 2.684994e-05 | 0.0057% |
126 rows × 7 columns
1 2 3 4 5 6 7 8 9 | |
2. Obtain SP error bounds from learned MCM¶
1 2 3 4 5 6 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | |
1 2 3 4 5 | |
| Quantity | Min | Max | Width | Value | |
|---|---|---|---|---|---|
| 0 | prep 0 meas 1 | 0.00020173 | 0.00048541 | 2.83679e-04 | (3.436 ± 1.418)e-4 |
| 1 | prep 1 meas 0 | 0.00017874 | 0.00046242 | 2.83679e-04 | (3.206 ± 1.418)e-4 |
| 2 | prep 0 excite to 1 | 0.00010132 | 0.00010459 | 3.27871e-06 | (1.030 ± 0.016)e-4 |
| 3 | prep 1 decay to 0 | 0.01165149 | 0.01165477 | 3.27871e-06 | (1.165 ± 0.000)e-2 |
1 | |
| Entry | Min | Max | Width | Value | |
|---|---|---|---|---|---|
| 0 | M^0[0,0] = p_0^(0,0) | 0.99979456 | 0.99979458 | 2.01318e-08 | (9.998 ± 0.000)e-1 |
| 1 | M^0[0,1] = p_1^(0,0) | -0.00028000 | 0.00000368 | 2.83679e-04 | (-1.382 ± 1.418)e-4 |
| 2 | M^0[1,0] = p_0^(0,1) | -0.00028000 | 0.00000368 | 2.83679e-04 | (-1.382 ± 1.418)e-4 |
| 3 | M^0[1,1] = p_1^(0,1) | 0.00045874 | 0.00045876 | 2.01318e-08 | (4.588 ± 0.000)e-4 |
| 4 | M^1[0,0] = p_0^(1,0) | 0.00010081 | 0.00010409 | 3.27872e-06 | (1.025 ± 0.016)e-4 |
| 5 | M^1[0,1] = p_1^(1,0) | 0.01165109 | 0.01193149 | 2.80400e-04 | (1.179 ± 0.014)e-2 |
| 6 | M^1[1,0] = p_0^(1,1) | 0.00010092 | 0.00038132 | 2.80400e-04 | (2.411 ± 1.402)e-4 |
| 7 | M^1[1,1] = p_1^(1,1) | 0.98788650 | 0.98788978 | 3.27872e-06 | (9.879 ± 0.000)e-1 |
1 | |
3. Learn Pauli-X error rate from learned MCM¶
4. Accuracy test¶
1 2 3 4 5 | |
1 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | |
1 | |
| MCM Index | Ideal | IBM Simple | Learned Interval | Empirical | In Interval? | Dev IBM | Dev Learned Mid | Error Ratio (IBM/Learned) | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0.0 | 0.003579 | [0.0022, 0.0028] | 0.002126 | ❌ | 0.001453 | 0.000403 | 3.600879 |
| 1 | 2 | 1.0 | 0.996261 | [0.9854, 0.9860] | 0.986947 | ❌ | 0.009314 | -0.001276 | 7.299643 |
| 2 | 3 | 0.0 | 0.003900 | [0.0141, 0.0147] | 0.014314 | ✅ | -0.010414 | 0.000088 | 119.011577 |
| 3 | 4 | 1.0 | 0.995940 | [0.9737, 0.9742] | 0.974352 | ❌ | 0.021588 | -0.000410 | 52.694949 |
| 4 | 5 | 0.0 | 0.004220 | [0.0257, 0.0263] | 0.026147 | ✅ | -0.021927 | -0.000158 | 138.440903 |
| 5 | 6 | 1.0 | 0.995619 | [0.9622, 0.9628] | 0.962142 | ❌ | 0.033477 | 0.000353 | 94.800299 |
| MCM Index | Ideal | IBM Simple | Learned Min | Learned Max | Empirical | Diff Ideal | Diff IBM | Diff Learned Min | Diff Learned Max | |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0.0 | 0.003579 | 0.002246 | 0.002812 | 0.002126 | -0.002126 | 0.001453 | 0.000120 | 0.000686 |
| 1 | 2 | 1.0 | 0.996261 | 0.985388 | 0.985954 | 0.986947 | 0.013053 | 0.009314 | -0.001559 | -0.000993 |
| 2 | 3 | 0.0 | 0.003900 | 0.014119 | 0.014684 | 0.014314 | -0.014314 | -0.010414 | -0.000195 | 0.000370 |
| 3 | 4 | 1.0 | 0.995940 | 0.973659 | 0.974225 | 0.974352 | 0.025648 | 0.021588 | -0.000693 | -0.000127 |
| 4 | 5 | 0.0 | 0.004220 | 0.025706 | 0.026271 | 0.026147 | -0.026147 | -0.021927 | -0.000441 | 0.000124 |
| 5 | 6 | 1.0 | 0.995619 | 0.962212 | 0.962778 | 0.962142 | 0.037858 | 0.033477 | 0.000070 | 0.000636 |
see all functions defined here¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | |
