
MENG 37100: Introduction to Quantum Processors / University of Chicago / Spring 2025 / Cleland

Problem Set 7
Due Thursday 5/15/2025

Note: You are not allowed to use AI assistance for generating solutions or code for these problem
sets.

If you are using a python notebook, please submit your python notebook ipynb file with your PSet.
Otherwise you must submit your code file in a way that it can be run. Please also submit proof
that your code runs properly and yields the desired answers. Finally, please clearly mark what
sections of your code are for what problems.

Not following these instructions will result in points deducted for this and all future PSets.

Problem 7-1 [16 points] The Cooper pair box. Here we will study numerically the behavior of
the Cooper pair box (CBP) in three different regimes (charge qubit - quantronium - transmon).
In the charge basis, the Hamiltonian is given by:

H = 4EC(n− ng)
2 − EJ

2

∑
n

|n+ 1⟩ ⟨n|+ |n⟩ ⟨n+ 1| , (1)

with EC = e2/(2C) the single electron charging energy, EJ the Josephson energy, and
ng = CVg/(2e) the gate voltage expressed in units of Cooper pairs. Also n is the number operator
for Cooper pairs on C; therefore ng should be considered multiplied by the identity operator I.
The sum over n runs over all charges, so we’ll have to make an approximation by only considering
a few Cooper pair charge states, between ±Nc. You can experiment to see how few you can get
away with and still get a good result. Also the Joule is not a natural experimental unit, so divide
by h and express all energies in this Pset in terms of GHz.

(a) In QuTiP, construct the n = n |n⟩ ⟨n| operator (don’t you love this notation?). This should
be a diagonal matrix with the n’s on the diagonal, from −Nc to +Nc.

(b) Now construct the full electrostatic energy 4EC(n− ng)
2 (note again ng is a number so here

we should write ngI).

(c) Construct the Josephson coupling operator (the second term in the Hamiltonian), which
will consist of couplings between adjacent charge states.

(d) Add the results of (b) and (c) together to get the full Hamiltonian. Find the eigenvalues
and eigenvectors of this Hamiltonian as a function of EJ , Ec,and ng. Plot the first 5 energy
levels as a function of ng for the following parameters:

(i) EJ = 5 GHz, EC = 20 GHz (charge qubit regime)

(ii) EJ = 5 GHz, EC = 5 GHz (quantronium regime)

(iii) EJ = 50 GHz, EC = 0.5 GHz (transmon regime)

Take care to plot everything on the same energy scale so it is easy to compare.
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(e) Plot the transition frequency E01 as a function of ng. Notice that the maxima are at ng
integer and minima at ng half-integer.

(f) Plot the anharmonicity η = E12 − E01 as a function of ng.

(g) Our drive, measurement, and gate speeds will be proportional to the transition dipole
matrix element. If we couple via charge (which is typical), the relevant matrix element is
⟨0|n|1⟩. To calculate this, take the eigenvectors you found for the ground and first excited
states in (d) and find the inner product with the n operator you made in (a). Plot this
matrix element for the three cases in part (d).

(h) Now let’s be more quantitative about how things change as a function of the ratio EJ/EC .
We will keep the “plasma” energy EP =

√
8ECEJ = 5 GHz fixed. Plot E01, ⟨0|n|1⟩, and η

vs. EJ/EC . To simplify the plots and calculations, don’t do this for all ng, just at ng ∼ 0.
However for numerical stability it’s best to move off zero by a small amount (0.001 or so).
Also plot the band dispersion ϵ01 = |E01(ng = 0)−E01(ng = 1/2)|. This gives the maximum
change of the qubit frequency due to charge noise.

Problem 7-2 [15 points] Let’s prepare a cat state! Assume we now have a microwave cavity.
To have fun, we want to introduce a Kerr nonlinearity for the cavity (to achieve that, you can
couple your cavity to a nonlinear device like a transmon qubit and inherit nonlinearity from
there). In rotating frame, we can then model the cavity with the Hamiltonian

H =
χ

2
n̂2 =

χ

2
(a†a)2. (2)

To initialize the cavity, we apply a linear drive to get a coherent state |α⟩ which, under the Fock
basis, can be written as

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
|n⟩. (3)

Let your state evolve under H. At time t, your state can be written

|ψ(t)⟩ = e−iĤt |α⟩ . (4)

(a) Can you write down |ψ(t)⟩ explicitly in the Fock basis {|n⟩}?

(b) After a time t = π/χ, your state |ψ(t = π/χ)⟩ will be a linear superposition of two coherent
states, say

|ψ(t = π/χ)⟩ = 1√
N

(eiϕ1 |β1⟩+ eiϕ2 |β2⟩), (5)

where N is a normalization factor. This type of state is called a “cat state”. Can you
determine what β1, β2 and the corresponding ϕ1, ϕ2 are? (Hint: treat the phase gained
from e−iHt for odd |n⟩ and even |n⟩ separately).

(c) Can you plot the Wigner function of |ψ(t = π/χ)⟩ in QuTiP? Choose α = 3. To represent
the state |ψ(t)⟩ in QuTiP, you need to choose a proper cutoff dimension. You will find some
reference code in the discussion section materials.
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(d) Use QuTiP to calculate |ψ(t = π/2χ)⟩ and plot its Wigner function.

(e) After a revival time t = Trev, your |ψ(Trev)⟩ will again be a coherent state |β⟩. Determine
the minimal Trev that leads to such a coherent state, and what the corresponding β is.
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