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. Abstract

As the rapid evolution of quantum hardware industry, various algorithms in quantum
computational chemistry are put forward for rigorous implementation. However, due
to lack of quantum error correction, a promising hybrid quantum-classical algorithm
to find the lowest eigenvalue of a given Hamiltonian for near-term quantum hard-
ware is the variational quantum eigensolver (VQE). To get the best performance
out of limited computational resources, using efficient basis sets to represent molec-
ular Hamiltonian in electronic structure problems has become a crucial step. Some
particular VQE calculations using Daubechies wavelet basis sets and efficient en-
coding schemes implemented via hardware-efficient parameterized quantum circuits
(PQCs) on real quantum machines or via chemical-inspired PQCs on simulators
to date are only accomplishing chemical accuracy on relatively small and simple-
structure molecules. Hence, in this research we introduce a quantum neural network
method while adopting the top pioneering basis sets of Daubechies wavelet orbitals
for accurate and efficient quantum computations of molecular properties. It is ex-
pected that the results of this work would be comparable with or better than those
of the previous works on model accuracy, required qubit number, circuit depth and
quantum noise tolerance. Moreover, this work exploits the novelty of combining
Daubechies wavelet molecular orbitals method with unsupervised learning on quan-
tum neural networks, which may hold the potential to develop a new area of research
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on relevant topics.

(=) Bt R E & Lot R P A
1. XA

Due to the rapid evolution of quantum hardware industry, quantum computing has
attracted much attention recently. Quantum computation of molecular properties is
one of the most promising quantum computing applications. Among various meth-
ods in quantum computational chemistry, choosing a suitable and efficient basis set
to represent the molecular Hamiltonian has played a key role in electronic structure
problem.

One of the promising algorithms for near-term quantum hardware is the Vari-
ational Quantum Eigensolver (VQE) [1} 2, |3]. VQE is a hybrid quantum-classical
algorithm as it uses the quantum computer for a state preparation and measurement
subroutine, and the classical computer to process the measurement results and up-
date the quantum computer according to an update rule. This exchanges the long
coherence times needed for phase estimation for a polynomial overhead due to mea-
surement repetitions and classical processing [3]. Currently the minimal STO-3G
basis set is commonly used in benchmark studies because it requires the minimum
number of spin orbitals, and thus minimum number of qubits and minimum circuit
depth. Calculations using minimal basis sets are of limited accuracy, and thus can
not provide useful prediction on the system properties (e.g. ground state energy,
bond length and angle, molecular vibration frequency).

Some particular VQE calculations using different basis sets or encoding schemes
[4, 5] implemented via hardware-efficient parameterized quantum circuits (PQCs) [3]
on real quantum machines or via chemical-inspired PQCs [3] on simulators to date
are only accomplishing chemical accuracy on relatively small and simple-structure
molecules (e.g. Hy, LiH). There is still room for improvement on efficiently harvest-
ing the power of resource-saving basis functions (e,g. Daubechies wavelet orbitals)
and novel variants of the VQE method.

Thus, to further enhance the overall performance in model accuracy, required qubit
number, circuit depth and quantum noise tolerance, this work aims to apply hybrid
quantum-classical neural networks to the quantum circuit with chosen basis sets [6].
With the help of unsupervised learning on neural networks, some characteristics that
are not considered by previous chemical-inspired UCCSD-VQE based method may
be included into the model, while some other redundant features could be discarded.
As a result, both model accuracy and circuit complexity would outperform previous
researches.

2. Bt 7 A

In this work, we follow the problem formulation used in [6]. The molecular “potential
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energy surface” problem can be described as follows:

Input: The bond lengths of the considered molecules. The cost function to be
minimized in the lowest eigenvalue problem of the VQE algorithm is defined as

f= Z (951 Hjl95) (1)

where |¢;) is the final state of the proposed hybrid quantum-classical neural networks
with the j™ bond length as input, with H; being the corresponding Hamiltonian.

Output: A sequence of “potential energy surface” that plots the ground state energy
of the molecule with respect to a range of bond lengths.

FEvaluation: The accuracy of the method is validated by comparing the results us-
ing the generated sequence of ground state energy and those performing the actual
laboratory experiment, within the error bound of 1 kcal/mol regarded as chemical
accuracy. In addition to the chemical accuracy, the circuit size, the runtime on real
machine and qubit number used during the model generation and calculation are
also crucial indicators. Note that there exists a trade-off among the indicators.

(Z) LERE R

1. Encoding Hamiltonians

(1) The Second Quantization

Observables must be independent of the representation used. Therefore, the
expectation values of second quantized operators must be equivalent to the ex-
pectation values of the corresponding first quantized operators. As first quan-
tized operators conserve the number of electrons, the second quantized operators
must contain an equal number of creation and annihilation operators. We can
use these requirements to obtain the second quantized form of the electronic
Hamiltonian |7}, 8|:

H = ZH qa ag+ = Z Hpq,«sa al b, (2)

qu’S

with

b = [ axs0 (- - Zh«—m) (%), Q)

hpgrs = / e, dsey 22O 00(X2) 60 (X2) 0 (1)

vy — 1o

(4)

The first integral represents the kinetic energy terms of the electrons and their
Coulomb interaction with the nuclei. The second integral is due to the electron-



electron Coulomb repulsion.

(2) The Daubechies wavelet (DW) molecular orbitals
Atomic orbitals are an intuitive choice of basis set for isolated molecular sys-
tems. However, basis sets constructed from atomic orbitals suffer from non-
orthogonality and hence require additional computations of the overlap matrices.
Daubechies wavelets provide an alternative option for basis sets in computational

quantum chemistry [9, |11} [L0]. In wavelet theory, there are a scaling function
¢(z) and a wavelet ¢(x),

$(z) =vV2 Y hio(2 —j), (5)

j=1-m
m

U(r) =vV2 Y g;0(2e —j), (6)

j=1-m

where the coefficients h; and g; = (=1)7h_;;1 are elements of the filter char-
acterizing the m™ order of the wavelet family. There are several advantages of
Daubechies wavelets: (1) the wavelets are localized in both real and reciprocal
space, which is conducive for providing an accurate representation of molec-
ular Hamiltonian in spatially localized grid points. (2) the completeness of
the Daubechies wavelet basis set eliminates the superposition error induced by
the incompleteness of other previously used basis sets (e.g. STO-3G). (3) the
DW method has its adaptivity within programming, making chemical accuracy
achievable at affordable computational cost.

2. Quantum Machine Learning (QML)

(1) Parameterized Quantum Circuits (PQCs)
A parameterized quantum circuit (PQC) is a quantum circuit consisting of data
encoding gates, entangling gates and parameterized gates (i.e., gates with tun-
able parameters) with fixed depth. In general, an n-qubit PQC can be written
as

U@ ) = (ﬁv) 9, m

where U (5) is the set of universal gates, m is the number of quantum gates, g is
the set of parameters {0, 61, - - - ,0;_1} with k being the total number of tunable
parameters, and [¢) is the initial quantum state. The operation of U can be
modified by changing parameters 0. Thus, by optimizing the cost function with
the parameters used in U (5), PQC approximates the wanted quantum states.



(2) Constructions of the Circuit

Our PQC consists of three parts: the data encoding part, the variational circuit
part, and the measurement part. One can use the hardware-efficient ansatze [3|
and the variational encoding technique to decrease the depth of the quan-
tum circuit so that it can be implemented on noisy intermediate-scale quantum
(NISQ) devices. The classical part of the circuit is enabled by measuring
the expectation values of the concerned operators. Notice that non-linearity is
introduced into the circuit via direct measurement operation, which is crucial in
boosting the function space of the neural network. The construction of the pro-
posed hybrid quantum-classical neural network is illustrated in Figure [1| where
the linear part in the classical neural network is replaced by the quantum circuit
and the nonlinear part is replaced by the quantum measurement.

Linear Non-linear Quantum circuit Measurement

Figure 1: Quantum-classical hybrid neural network, the linear part in the classical neural net-
work is replaced by the quantum circuit and the nonlinear part is replaced by the measurement.

From [6].

(v) BF R kAP
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(1) Orbital Integrals

We will calculate the orbital integrals in the second quantization Hamiltonian
by Daubechies wavelet (minimal) basis orbitals with as reference, and with
other sets of basis (e.g. STO-3G) for final result comparison.

(2) Mapping Operators

Once the calculations of orbital integrals are done, we apply second quantized
basis set encoding methods, such as the Jordan-Wigner or Bravyi-Kitaev en-
coding method, to map from operators that act on indistinguishable fermions to



operators acting on distinguishable qubits to obtain the corresponding Hamil-
tonian in the Hilbert space of the qubits [3]. One may utilize the OpenFermion
package |15] during the encoding procedure.

Implementation of Quantum Neural Networks

To train a quantum neural network model on a hybrid circuit, we need to define
a reliable network architecture. The observation is that the state space in quan-
tum computing increases exponentially with the number of qubits, while the
complexity of a classical neural network increases exponentially with the num-
ber of neuron layers in the neural network. Since increasing the number of layers
of the variational part circuit (composed of entangling gates and parametrized
gates) would reach saturation and may not improve the performance when the
number of layers is large enough [16], we aim not to increase the depth of the
circuit, but to develop a hardware-efficient hybrid network which saves computa-
tional resources while maintaining essential non-linearity. In this work, we may
choose the measurement operation as means of implementing non-linearity into
the circuit and use the expectation values of operators on each qubit of the PQC
to serve as the nonlinear operations connecting different quantum layers. The
expectation values of operators capable of extracting useful information from
the PQC are used as the input data for the encoding part of the next quantum
circuit layer. As for the data encoding part, we may initialize the input state
as (@7 Ry(a)H) [0)*", where a is the bond length, H is the Hadamard gate,
and R, is the rotational-y gate. The number of qubits n is equal to the number
of qubits of the corresponding Hamiltonian.

For the variational part of our PQC, we may construct a circuit consisting of
R, and CNOT gates, which can be written as [6]

n—1
[T (®i By(wisnx;)) (CNOT, 5,05 - - CNOT354,CNOT} )
j=0
-(CNOTn_Qm_l e CNOT273CNOT071) , for even n, (8)
and
n—1

( ®:~L;01 Ry(anxj)) (CNOTn_27n_1 cee CNOT3’4CNOT1,2)

i
o

: (CNOTn_gm_Q cee CNOT2’3CNOT0’1) > for odd n, (9)

where w are adjustable parameters, and CNOT,, ,, represents CNOT gate with
m as the control qubit and n as the target qubit. This particular way of circuit
construction is plotted below in Figure [2| where b; in the data encoding part
of the second quantum circuit layer is the measured expectation value of o,
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Figure 2: A 4-qubit quantum-classical neural network. The orange parts are data encoding,
the blue parts are the variational (parametrized) quantum circuits, and the yellow parts are
measurements. Notice that the first set of the measurements serve as nonlinear operations
connecting the two PQCs. From [6].

Notice that the ways of arranging different gates and the numbers of qubits,
repetition circuit units and circuit layers are not definite (i.e. there remains
wide possibility and freedom for the construction of our hybrid neural network).
For instance, we can adjust the types of the parameterized gates and the number
of repetition units in our variational circuit (4 repetitions for the case in Figure
2)), which would in turn affect our model expressibility and entangling capability.
The Noise Model

To take the effect of quantum noise into consideration, we will investigate the
performance of quantum simulations under noisy quantum computer configu-
rations instead of running on noise-free simulator, which is more realistic to a
NISQ device. We will then implement the linear zero-noise extrapolation

method for error mitigation [17, 4, [18].

2. RV B

(1)

Review previous researches regarding molecular Hamiltonian encoding (espe-
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cially the Daubechies wavele method) as well as quantum-classical hybrid neural
networks, in order to come up with the research methods for this work.

(2) Get familiar with the algorithm flow of Variational Quantum Eigensolver and
modify several parts within it to adapt to the hybrid neural network method.

(3) Calculate each term of the Hamiltonian of chosen molecules (e.g. Hy, LiH, H,O)
by performing a Hartree-Fock calculation using the BigDFT code |11} [19], an
ab initio software package that employs Daubechies wavelet basis sets. Then,
select a minimal number of spin orbitals from the BigDFT output to form a
set of (minimal) basis Daubechies wavelet molecular orbitals for the subsequent
quantum simulations.

(4) Train the proposed hybrid quantum-classical neural network on several indicated
bond lengths.

(5) Apply the rest of the bond lengths to the trained network as input with error
mitigation techniques applied to the output.

(6) Conduct experiments and get the potential energy surface of various small
molecules to evaluate the accuracy and efficiency of our method and compare
with previous works.

(7) Fine-tune our works and conduct academic paper writing.

(Z) EBMER

1. Performance
As mentioned in (=), there are several crucial indicators to evaluate the work, in-
cluding the deviation between the generated ground state energy surface and the
experimental results, the circuit size, the runtime and qubit used during model gen-
eration and simulation calculations.

For chemical accuracy, since the Daubechies wavelet basis orbitals possess ad-
vantageous features over those of other basis sets (e.g. STO-3G or 6-31G), the
self-consistent field calculations based on a Daubechies wavelet basis set can pre-
pare a better set of molecular orbitals, which in turn results in a better many-body
Hamiltonian. Thus it is expected that the accuracy of our model will be comparable
with or even better than previous works.

For circuit size, since we will conduct tests on a variety of quantum neural net-
work architecture in this research, it is expected to result in a resource-efficient and
short-depth circuit while maintaining the desired chemical accuracy.

2. Novelty
Though several previous researches in quantum computational chemistry areas which
took neural-network-based approaches had overcame some bottlenecks of the corre-
sponding VQE algorithm flows |20, 21| for calculating molecular potential energy



surfaces, it’s unprecedented to apply quantum machine learning methods into quan-
tum computational chemistry with molecular Hamiltonian generated by Daubechies
wavelet orbital basis. It is thus expected that this work could break the bottleneck
of finding more accurate molecular properties and would even develop a new series
of systematical methods in relevant research areas.
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1.

Discussion about the direction of the research: It’s my first time engaging in
such an academic research, so I'm not familiar with the whole process of conducting
a research. Through regular meeting with Prof. Goan, I can avoid getting lost during
the research.

. Clarification of the Daubechies wavelet method and quantum neural net-

work architecture: Prof. Goan is an expert in quantum computing and possesses
extensive research experiences about the topics of quantum computational chemistry

and quantum machine learning. The methods in this work could be justified with
the help of Prof. Goan.

. Usage of relevant software packages (e.g. IBM Qiskit, OpenFermion): This

research is based on the quantum machine simulator IBM qiskit package, which Prof.
Goan possess extensive experience manipulating with.
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