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. Abstract

As the rapid evolution of quantum hardware industry, various algorithms in quan-
tum computational chemistry are ready for rigorous implementation. To get the
best performance out of limited computational resources, a plethora of basis sets
for encoding molecular Hamiltonian in electronic structure problem has become a
crucial step. However, most basis sets implemented via hardware-efficient way on
real machine or via chemical-inspired way on simulator to-date are only accom-
plishing chemical accuracy on relatively simple-structure-molecules. (e.g. ground
state energy, bond length and angle, molecular vibration frequency). Hence, we
introduce the neural network method while adopting the top pioneering basis sets
(Daubechies wavelet) within this research. It is expected that the results of this work
would be comparable with or better than that of the previous works on model accu-
racy, required qubit number, circuit depth and quantum noise tolerance. Moreover,
this work exploits the novelty of combining Daubechies wavelet molecular orbitals
method with unsupervised learning on quantum neural networks, which may hold
the potential to develop a new area of research on relevant topics.
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Due to the rapid evolution of quantum hardware industry, various algorithms in

quantum computational chemistry are ready for rigorous implementation. Among
them a plethora of basis sets for encoding molecular Hamiltonian has played a key



role in electronic structure problem.

One of the promising algorithm for near-term quantum hardware is the VQE
(Variational Quantum Eigensolver) [1][2], it uses the quantum computer for a state
preparation and measurement subroutine, and it uses the classical computer to pro-
cess the measurement results and update the quantum computer according to an
update rule. This exchanges the long coherence times needed for phase estimation
for a polynomial overhead due to measurement repetitions and classical processing.

However, the aforementioned VQE method predicts electronic properties via vari-
ous ways of encoding molecular Hamiltonian through basis functions within chemical
accuracy only on a small portion of relatively simple molecules (e.g. Hs, LiH) to-
date. There is still space for improvement on efficiently harvesting the power of
resource-saving basis function (i.e. Daubechies wavelet).

Thus, to further enhance the overall performance in model accuracy, required
qubit number, circuit depth and quantum noise tolerance, this work aims to apply
hybrid quantum-classical neural network to the quantum circuit with chosen basis
sets [3]. With the help of unsupervised learning on NN, some characteristics that are
not considered by previous UCCSD-VQE based method may be included into the
model, while some other redundant features could be discarded. As a result, both
model accuracy and circuit complexity would outperform previous researches.

AR

In this work, we follow the problem formulation used in [3]. The “potential energy
surface” problem can be described as the following:

Input: The bond lengths of the considered molecules. The cost function is defined
as

f= Z (951 Hjl95) (1)

where |¢;) is the final state of the proposed hybrid quantum-classical neural network
with the j™ bond length as input, with H; being the corresponding Hamiltonian.

Output: A sequence of “potential energy surface” that plots the ground state energy
of the molecule with respect to a range of bond lengths.

FEvaluation: The accuracy of the method is validated by comparing the results us-
ing the generated sequence of ground state energy and those performing the actual
lab experiment, within the error bound of 1 kcal /mol regarded as chemical accuracy.
In addition to the chemical accuracy, the circuit size, the runtime on real machine
and qubit number used during model generation are also crucial indicators. Note
that there exists a trade-off among each indicator.
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1. Encoding Hamiltonians

(1)

The Second Quantization

Observables must be independent of the representation used. Therefore, the
expectation values of second quantized operators must be equivalent to the ex-
pectation values of the corresponding first quantized operators. As first quan-
tized operators conserve the number of electrons, the second quantized operators
must contain an equal number of creation and annihilation operators. We can
use these requirements to obtain the second quantized form of the electronic
Hamiltonian [4][5]:

H= ZHpqa ag + - Z Hpgrsabala,as, (2)
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with
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(4)

The first integral represents the kinetic energy terms of the electrons and their
Coulomb interaction with the nuclei. The second integral is due to the electron-
electron Coulomb repulsion.

The Daubechies wavelet molecular orbitals (DW)

Atomic orbitals are an intuitive choice of basis set for isolated molecular sys-
tems. However, basis sets constructed from atomic orbitals suffer from non-
orthogonality and hence require additional computations of the overlap matrices.
Daubechies wavelets provide an alternative option for basis sets in computational
quantum chemistry [6][7][8]. In wavelet theory, there are a scaling function ¢(x)
and a wavelet ¥(z),

Ms

P(x) = \/5 hjo(2x — j), (5)
():wﬁ'E: 9;6(2z — ), (6)

where the coefficients h; and g; = (—1)7h_;41 are elements of the filter char-
acterizing the m'" order of the wavelet family. There are several advantages of
Daubechies wavelets: (1) the wavelets are localized in both real and reciprocal



space, which is conducive for providing an accurate representation of molec-
ular Hamiltonian in spatially localized grid points. (2) the completeness of
the Daubechies wavelet basis set eliminates the superposition error induced by
the incompleteness of other previously used basis sets (e.g. STO-3G). (3) the
DW method has its adaptivity within programming, making chemical accuracy
achievable at affordable computational cost.

2. Quantum Machine Learning (QML)

(1) Parameterized Quantum Circuits (PQCs)
A parameterized quantum circuit is a quantum circuit consisting of parameter-
ized gates with fixed depth. In general, an n-qubit PQC can be written as

U@ [9) = (ﬁU) 9). 7)

—

where U(0) is the set of universal gates and m is the number of quantum gates.
g is the set of parameters {0y, 6, ,0;_1} where k is the total number of tun-
able parameters and |¢) is the encoded quantum state after data encoding. The
operation of U can be modified by changing parameters 0. Thus, by optimiz-

—

ing the parameters used in U(6), PQC approximates the wanted quantum states.

(2) Constructions of the Circuit

Our circuit consists of three parts: the data encoding part, the variational circuit
part, and the classical part. One can use the variational encoding 9] technique
to decrease the depth of the quantum circuit so that it can be implemented
on NISQ devices. The classical part of the circuit is enabled by measuring
the expectation values of the concerned operators. Notice that non-linearity is
introduced into the circuit via direct measurement operation, which is crucial
in boosting the function space of the neural network. The construction of the
proposed hybrid quantum-classical neural network is illustrated in Figure [I}
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(1) Orbital Integrals
We will calculate the orbital integrals in the second quantization Hamiltonian

by Daubechies wavelet minimal basis with |10] as reference, and with other sets
of basis (e.g. STO-3G) for final result comparison.

(2) Mapping Operators
Once the calculations of orbital integrals are done, we apply basis set encoding



Linear Non-linear Quantum circuit Measurement

Figure 1: quantum-classical hybrid neural network, the linear part in the classical neural net-
work is replaced by the quantum circuits and the nonlinear part is replaced by measurements.

via the Jordan-Wigner or Bravyi-Kitaev method to obtain the operators that
act on distinguishable qubits in our quantum circuit. One may utilize the Open-
Fermion package during the encoding procedure.

Implementation of Neural Networks

To train a NN model on a hybrid circuit, we need to define a reliable network ar-
chitecture. Since increasing the number of layers of the parameterized quantum
circuit (PQC) would reach saturation and may not improve the performance
when the number of layers is large enough , we aim not to increase the
depth of the circuit, but to develop a hardware-efficient hybrid network which
saves computational resources while maintaining essential non-linearity. In this
work, we may choose the measurement operation as means of implementing
non-linearity into the circuit. As for the data encoding part, we may initialize
the input state as ( ®/) Ry(a)H)[0)®", where a is the bond length, H is the
Hadamard gate, and R, is the rotational-y gate. The number of qubits n is
equal to the number of qubits of the corresponding Hamiltonian.

For the variational part of our PQC, we may construct a circuit consisting of
R, and CNOT gates, which can be written as

n—1
[T (@2 By(wisnxs)) (CNOT, 555 - - CNOT3,CNOT )
j=0

-(CNOTn_gyn_l e CNOTgngNOToﬁl) , for even n, (8)
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'(CNOTn_37n_2 ce CNOT2’3CNOT0,1) 5 for odd n, (9)

where w are adjustable parameters, and CNOT,, ,, represents CNOT gate with
m as the control qubit and n as the target qubit. This particular way of circuit
construction is plotted below in Figure
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Figure 2: 4-qubit quantum-classical neural network. The orange parts are the data encoding,
the blue parts are parameterized quantum circuits, and the yellow parts are measurements.
Notice that the first set of measurements serve as nonlinear operations connecting two PQCs.

3]

Notice that the ways of arranging different gates and the number of qubits are
not definite (i.e. there remains wide possibility and freedom for the construction
of our network). For instance, we can adjust the number of repetition units in
our variational circuit (4, for the case in the figure above), which in terms affect
our model expressivity; either we can add qubits to our circuit to increase the
Hilbert space hence boosting the function space of our hybrid model.



(4) The Noise Model
To take the effect of quantum noise into consideration, we will investigate the
performance of quantum simulations under noisy quantum computer configu-
rations instead of running on noise-free simulator, which is more realistic to a
NISQ [13] device. We will then implement the linear zero-noise extrapolation
method for error mitigation. [14][15]|16]

2. HRYBR
(1) Review previous researches regarding molecular Hamiltonian encoding (espe-

cially the Daubechies wavele method) as well as quantum-classical hybrid neural
networks, in order to come up with the research methods for this work.

(2) Get familiar with the algorithm flow of Variational Quantum Eigensolver and
modify several parts within it to adapt to the hybrid neural network method.

(3) Calculate each term of the Hamiltonian of chosen molecules (e.g. Ho, LiH, H,O)
by performing a Hartree-Fock calculation using the BigDFT code [7]|17], an
ab initio software package that employs Daubechies wavelet basis sets. Then,
select a minimal number of spin orbitals from the BigDFT output to form a
set of minimal basis Daubechies wavelet molecular orbitals for the subsequent
quantum simulations.

(4) Train the proposed hybrid quantum-classical neural network on several indicated
bond length.

(5) Apply the rest of the bond lengths to the trained network as input with error
mitigation techniques applied to the output.

(6) Conduct experiments and get the potential energy surface of various small
molecules to evaluate the accuracy and efficiency our method and compare with
previous works.

(7) Fine-tune our works and conduct academic paper writing.

(B) BMELR

1. Performance
As mentioned in (=), there are several crucial indicators to evaluate the work, in-
cluding the deviation between the generated ground state energy surface and the
experimental results, the circuit size, the runtime and qubit used during model gen-
eration and usage.

For chemical accuracy, since the Daubechies wavelet method possess advantage
against other method for establishing basis set (e.g. STO-3G or 6-31G), the self-
consistent field calculations based on a Daubechies wavelet basis set can prepare a
better set of molecular orbitals, which in turn results in a better many-body Hamil-
tonian. Thus it is expected that the accuracy of our model will be comparable with



or even better than previous works.

For circuit size, since we will conduct test on a variety of network architecture in
this research, it is expected to result in a resource-efficient and short-depth circuit
while maintaining the desired chemical accuracy.

. Novelty

It’s unprecedented to apply machine learning methods into molecular Hamiltonian
generated by Daubechies wavelet method. As several previous researches in quan-
tum computational chemistry areas which took NN-based approaches and overcame
the bottlenecks of the corresponding algorithm flows [18][19], it’s expected that this
work could break the bottleneck of molecular properties finding and even develop a
new series of systematical method in relevant research area.
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1.

Discussion about the direction of the research: It’s my first time engaging in
such an academic research, so I'm not familiar with the whole process of conducting
a research. Through regular meeting with Prof. Goan, I can avoid getting lost during
the research.

. Clarification of DW method and quantum neural network architecture:

Prof. Goan possesses extensive research experiences about the topics of quantum
computational chemistry and quantum machine learning. The methods in this work
could be justified with the help of Prof. Goan.

. Usage of relevant software packages (e.g. IBM Qiskit, OpenFermion): This

research is based on the quantum machine simulator IBM qiskit package, which Prof.
Goan possess extensive experience manipulating with.



