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(一) 摘摘摘要要要

1. 摘摘摘要要要
隨著量子硬體 (Quantum Hardware) 的快速發展，許多量子計算化學領域 (Quan-
tum Computational Chemistry) 的演算法得以實行。因此，為了最佳化利用計算
資源，多種基底集 (basis set) 的應用成為了分析小分子電子結構問題 (molecu-
lar electronic structure problem) 的重要手段。然而，當前的 basis set 大多是以
Variational Quantum Eigensolver 的形式引入量子電路中，僅能在結構相對簡單
的分子上得到具有化學準度 (Chemical Accuracy) 的相關性質 (基態能量、鍵長
鍵角、振動頻率)。因此，本研究引入深度學習中的神經網路 (Neural Networks)
模型，同時搭配數個指標性的 basis set function 應用於 quantum computational
chemistry 中，預期生成的模型準確率、量子電路大小與深度、量子雜訊容忍性能
等層面都能與先前的研究相比擬或甚至更加突破；同時，將深度學習運用於分析
Daubechies wavelet molecular Hamiltonian 也是前所未有的嘗試，有望為相關的問
題開創新的研究方向。

2. Abstract
As the rapid evolution of quantum hardware industry, various algorithms in quan-
tum computational chemistry are ready for rigorous implementation. To get the
best performance out of limited computational resources, a plethora of basis sets
for encoding molecular Hamiltonian in electronic structure problem has become a
crucial step. However, most basis sets are implemented by UCCSD-VQE method
into quantum circuits to-date, and are accomplishing chemical accuracy only on rela-
tively simple-structure-molecules. (e.g. ground state energy, bond length and angle,
molecular vibration frequency). Hence, we introduce the neural network method
while adopting the top pioneering basis sets (Daubechies wavelet) within this re-
search. It is expected that the results of this work would be comparable with or
better than that of the previous works on model accuracy, required qubit number,
circuit depth and quantum noise tolerance. Moreover, this work exploits the nov-
elty of combining Daubechies wavelet molecular orbitals method with unsupervised
learning on quantum neural networks, which may hold the potential to develop a
new area of research on relevant topics.

(二) 研研研究究究動動動機機機與與與研研研究究究問問問題題題

1. 研研研究究究動動動機機機
Due to the rapid evolution of quantum hardware industry, various algorithms in
quantum computational chemistry are ready for rigorous implementation. Among
them a plethora of basis sets for encoding molecular Hamiltonian has played a key
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role in electronic structure problem.

One of the promising algorithm for near-term quantum hardware is the VQE
(Variational Quantum Eigensolver) [1][2], it uses the quantum computer for a state
preparation and measurement subroutine, and it uses the classical computer to pro-
cess the measurement results and update the quantum computer according to an
update rule. This exchanges the long coherence times needed for phase estimation
for a polynomial overhead due to measurement repetitions and classical processing.

However, the aforementioned VQE method predicts electronic properties via vari-
ous ways of encoding molecular Hamiltonian through basis functions within chemical
accuracy only on a small portion of relatively simple molecules (e.g. H2, LiH) to-
date. There is still space for improvement on efficiently harvesting the power of
resource-saving basis function (i.e. Daubechies wavelet).

Thus, to further enhance the overall performance in model accuracy, required
qubit number, circuit depth and quantum noise tolerance, this work aims to apply
hybrid quantum-classical neural network to the quantum circuit with chosen basis
sets [3]. With the help of unsupervised learning on NN, some characteristics that are
not considered by previous UCCSD-VQE based method may be included into the
model, while some other redundant features could be discarded. As a result, both
model accuracy and circuit complexity would outperform previous researches.

2. 研研研究究究問問問題題題
In this work, we follow the problem formulation used in [3]. The “potential energy
surface” problem can be described as the following:

Input: The bond lengths of the considered molecules. The cost function is defined
as

f =
∑
j

⟨ϕj|Hj |ϕj⟩ (1)

, where |ϕj⟩ is the final state of the proposed hybrid quantum-classical neural network
with the jth bond length as input, with Hj being the corresponding Hamiltonian.

Output: A sequence of “potential energy surface” that plot the ground state energy
of the molecule with respect to a range of bond lengths.

Evaluation: The accuracy of the method is validated by comparing the results us-
ing the generated sequence of ground state energy and those performing the actual
lab experiment, within the error bound of 1 kcal/mol regarded as chemical accuracy.
In addition to the chemical accuracy, the circuit size, the runtime on real machine
and qubit number used during model generation are also crucial indicators. Note
that there exists a trade-off among each indicator.
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(三) 文文文獻獻獻回回回顧顧顧與與與探探探討討討

1. Encoding Hamiltonians

(1) The Second Quantization
Observables must be independent of the representation used. Therefore, the
expectation values of second quantized operators must be equivalent to the ex-
pectation values of the corresponding first quantized operators. As first quan-
tized operators conserve the number of electrons, the second quantized operators
must contain an equal number of creation and annihilation operators. We can
use these requirements to obtain the second quantized form of the electronic
Hamiltonian [4][5]:

H =
∑
p,q

Hpqa
†
paq +

1

2

∑
p,q,r,s

Hpqrsa
†
pa

†
qaras (2)

, with

hpq =

∫
dxϕ∗

p(x)
(
∇2

2
−
∑
I

ZI

|r − RI |

)
ϕq(x) (3)

hpqrs =

∫
dx1dx2

ϕ∗
p(x1)ϕ

∗
q(x2)ϕr(x2)ϕs(x1)

|r1 − r2|
(4)

The first integral represents the kinetic energy terms of the electrons and their
Coulomb interaction with the nuclei. The second integral is due to the electron-
electron Coulomb repulsion.

(2) The Daubechies wavelet molecular orbitals (DW)
Atomic orbitals are an intuitive choice of basis set for isolated molecular sys-
tems. However, basis sets constructed from atomic orbitals suffer from non-
orthogonality and hence require additional computations of the overlap matrices.
Daubechies wavelets provide an alternative option for basis sets in computational
quantum chemistry [6][7][8]. In wavelet theory, there are a scaling function ϕ(x)
and a wavelet ψ(x),

ϕ(x) =
√
2

m∑
j=1−m

hjϕ(2x− j) (5)

ψ(x) =
√
2

m∑
j=1−m

gjϕ(2x− j) (6)

, where the coefficients hj and gj = (−1)jh−j+1 are elements of the filter char-
acterizing the mth order of the wavelet family. There are several advantages of
Daubechies wavelets: (1) the wavelets are localized in both real and reciprocal
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space, which is conducive for providing an accurate representation of molec-
ular Hamiltonian in spatially localized grid points. (2) the completeness of
the Daubechies wavelet basis set eliminates the superposition error induced by
the incompleteness of other previously used basis sets (e.g. STO-3G). (3) the
DW method has its adaptivity within programming, making chemical accuracy
achievable at affordable computational cost.

2. Quantum Machine Learning (QML)
(1) Parameterized Quantum Circuit (PQC)

A parameterized quantum circuit is a quantum circuit consisting of parameter-
ized gates with fixed depth. In general, an n-qubit PQC can be written as

U(θ⃗) |ψ⟩ =
( m∏

i=1

Ui

)
|ψ⟩ (7)

, where U(θ⃗) is the set of universal gates and m is the number of quantum
gates. θ⃗ is the set of parameters {θ0, θ1, · · · , θk−1} where k is the total number
of parameters and |ψ⟩ is the encoded quantum state after data encoding. The
operation of U can be modified by changing parameters θ⃗. Thus, by optimiz-
ing the parameters used in U(θ⃗), PQC approximates the wanted quantum states.

(2) Constructions of the Quantum Layer
The quantum layer consists of two parts: the variational encoding part and
PQC part. One can use the variational encoding [9] to decrease the depth of
the quantum circuit so that it can be implemented on NISQ devices.

The input state is initialized as
(
⊗n−1

i=0 Ry(a)H
)
|0⟩⊗n, where a is the bond

length, H is the Hadamard gate, and Ry is the rotational-y gate. The number
of qubits n is equal to the number of qubits of the corresponding Hamiltonian.

The quantum computation part is to use a simple PQC consisting of Ry and
CNOT gates, which can be written as

n−1∏
j=0

(
⊗n−1

i=0 Ry(wi+n×j)
)(

CNOTn−3,n−2 · · ·CNOT3,4CNOT1,2

)
·
(
CNOTn−2,n−1 · · ·CNOT2,3CNOT0,1

)
, for even n. (8)

n−1∏
j=0

(
⊗n−1

i=0 Ry(wi+n×j)
)(

CNOTn−2,n−1 · · ·CNOT3,4CNOT1,2

)
·
(
CNOTn−3,n−2 · · ·CNOT2,3CNOT0,1

)
, for odd n. (9)

, where w are adjustable parameters, and CNOTm,n represents CNOT gate with
m as the control qubit and n as the target qubit.
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(3) The Nonlinear Layer
The classical layer is enabled by expectation values of the operators. Notice
that non-linearity is introduced into the circuit via direct measurement opera-
tion, which is crucial in boosting the function space of the neural network. The
construction of the proposed hybrid quantum-classical neural network is illus-
trated in Figure 1.

Figure 1: 4-qubit quantum-classical neural network. The orange parts are the data encoding,
the blue parts are parameterized quantum circuits, and the yellow parts are measurements.
Notice that the first measurements serve as nonlinear operations connecting two PQC. [3]

(四) 研研研究究究方方方法法法及及及步步步驟驟驟

1. 研研研究究究方方方法法法

(1) Orbital Integrals
We will calculate the orbital integrals in the second quantization Hamiltonian
by Daubechies wavelet minimal basis with [10] as reference, with the follow up
transformation to the qubit Hamiltonian utilizing the OpenFermion package [11].
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(2) Implementation of Neural Networks
To train a NN model on a hybrid circuit, we need to define a reliable network ar-
chitecture. Since increasing the number of layers of the parameterized quantum
circuit (PQC) would reach saturation and may not improve the performance
when the number of layers is large enough [12], we aim not to increase the
depth of the circuit, but to develop a hardware-efficient hybrid network which
saves computational resources while maintaining essential non-linearity. In this
work, we may choose the measurement operation as means of implementing non-
linearity into the circuit, as plotted in Figure 2.

Figure 2: quantum-classical hybrid neural network, the linear part in the classical neural net-
work is replaced by the quantum circuits and the nonlinear part is replaced by measurements.

(3) The Noise Model
To take the effect of quantum noise into consideration, we will investigate the
performance of quantum simulations under noisy quantum computer configu-
rations instead of running on noise-free simulator, which is more realistic to a
NISQ [13] device. We will then implement the linear zero-noise extrapolation
method for error mitigation. [14][15][16]

2. 研研研究究究步步步驟驟驟

(1) Review previous researches regarding molecular Hamiltonian encoding (espe-
cially the Daubechies wavele method) as well as quantum-classical hybrid neural
networks, in order to come up with the research methods for this work.

(2) Get familiar with the algorithm flow of Variational Quantum Eigensolver and
modify several parts within it to adapt to the hybrid neural network method.

(3) Calculate each term of the Hamiltonian of chosen molecules (e.g. H2, LiH, H2O)
by performing a Hartree-Fock calculation using the BigDFT code [7][17], an
ab initio software package that employs Daubechies wavelet basis sets. Then,
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select a minimal number of spin orbitals from the BigDFT output to form a
set of minimal basis Daubechies wavelet molecular orbitals for the subsequent
quantum simulations.

(4) Train the proposed hybrid quantum-classical neural network on several indicated
bond length.

(5) Apply the rest of the bond lengths to the trained network as input with error
mitigation techniques applied to the output.

(6) Conduct experiments and get the potential energy surface of various small
molecules to evaluate the accuracy and efficiency our method and compare with
previous works.

(7) Fine-tune our works and conduct academic paper writing.

(五) 預預預期期期結結結果果果

1. Performance
As mentioned in (二), there are several crucial indicators to evaluate the work, in-
cluding the deviation between the generated ground state energy surface and the
experimental results, the circuit size, the runtime and qubit used during model gen-
eration and usage.

For chemical accuracy, since the Daubechies wavelet method possess advantage
against other method for establishing basis set (e.g. STO-3G or 6-31G), the self-
consistent field calculations based on a Daubechies wavelet basis set can prepare a
better set of molecular orbitals, which in turn results in a better many-body Hamil-
tonian. Thus it is expected that the accuracy of our model will be comparable with
or even better than previous works.

For circuit size, since we will conduct test on a variety of network architecture in
this research, it is expected to result in a resource-efficient and short-depth circuit
while maintaining the desired chemical accuracy.

2. Novelty
It’s unprecedented to apply machine learning methods into molecular Hamiltonian
generated by Daubechies wavelet method. As several previous researches in quan-
tum computational chemistry areas which took NN-based approaches and overcame
the bottlenecks of the corresponding algorithm flows [18][19], it’s expected that this
work could break the bottleneck of molecular properties finding and even develop a
new series of systematical method in relevant research area.
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(七) 需需需要要要指指指導導導教教教授授授指指指導導導內內內容容容

1. Discussion about the direction of the research: It’s my first time engaging in
such an academic research, so I’m not familiar with the whole process of conducting
a research. Through regular meeting with Prof. Goan, I can avoid getting lost during
the research.

2. Clarification of DW method and quantum neural network architecture:
Prof. Goan possesses extensive research experiences about the topics of quantum
computational chemistry and quantum machine learning. The methods in this work
could be justified with the help of Prof. Goan.

3. Usage of relevant software packages (e.g. IBM Qiskit, OpenFermion): This
research is based on the quantum machine simulator IBM qiskit package, which Prof.
Goan possess extensive experience manipulating with.
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