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Abstract

Quantum game theory utilizes the power of quantum computation: entanglement and superposi-

tion. In particular, without entanglement, quantum games are identical to classical games. However,

there are no general rules for quantum advantage in a quantum game. Therefore, we aim to explore

sufficient conditions for quantum advantage in this paper. In particular, we identify two aspects of

quantum advantage: utility and stability. The first aspect means that quantum strategies can lead to

outcomes unobtainable for classical ones. The second aspect implies that the players will naturally

fall into the quantum Nash equilibrium through gradient-based learning. Thus, this paper provides

more insights into quantum advantage and non-local games.

The overview of this report is given below.

1) Sec. I: We give an introduction to quantum game theory and its relationship with quantum

communication and cryptography.

2) Sec. II: We review some of the related works regarding non-local games, quantum game

theory, and their applications.

3) Sec. III: We give a mathematical description of the relationship between quantum games

without entanglement and classical games.

4) Sec. IV: We provide a sufficient condition for quantum advantage in a two-player two-strategy

game and discuss the stability issue of the Nash equilibrium.

5) Sec. V: We generalize the model of a two-player two-strategy game to a multi-player two-

strategy game.

6) Sec. VI: We generalize the model of a two-player two-strategy game to a two-player multi-

strategy game.

7) Sec. VII: We list some future works of the theoretical research and applications of quantum

game theory.

8) Sec. VIII: We summarize the contributions of this research and draw our conclusions.

Index Terms

game theory, quantum advantage, entanglement, quantum communication, quantum key distri-

bution
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I. INTRODUCTION

With the advent of the Noisy Intermediate-Scale Quantum (NISQ) era [1], many countries

are striving to demonstrate quantum advantages. A critical part of quantum computation and

quantum information is quantum communication. By now, plenty of quantum cryptography

and communication protocols have been proposed. However, how to quantitatively analyze

quantum communication systems is still a huge problem. No general benchmark exists for

quantum cryptography and communication protocols, making it difficult to compare them

or demonstrate quantum advantages. In classical communication, researchers adopt game

theory to compare different systems widely. Therefore, it is natural to use game theory in

the quantum domain.

Nonetheless, there are two challenges for using quantum game theory to analyze quantum

communication networks. First, the current quantum protocols are cooperative rather than

competitive. On the other hand, game theory is most suitable for investigating competitive

scenarios. Therefore, it is better to view the protocols from an optimization viewpoint, where

the goal is to optimize an objective function, instead of the game-theoretic analysis, where

each player has different objectives. Second, large-scale quantum algorithms are hard to

analyze inherently. Thus, before a comprehensive treatment of quantum game theory, it is

more desirable to have a deeper understanding of a simple yet profound quantum game:

non-local games.

Non-local games are widely utilized by researchers to compare classical and quantum

resources because the game structure can quantify quantum advantage. For example, we often

use the CHSH game to demonstrate the separation between classical theories and quantum

ones [2]. The CHSH inequality is a Bell-type inequality, and we can use the CHSH game to

prove Bell’s theorem experimentally [3]. However, past researchers only examined non-local

games from a quantum viewpoint instead of a game-theoretic one. In this research, we aim

to approach non-local games from a game-theoretic point of view.

The main contributions of this research are summarized as follows.

1) We identify two aspects of quantum advantage: utility and stability. To the best of our

knowledge, we are the first to point out the importance of stability in quantum games.

2) We provide a sufficient condition for utility superiority under a general multi-player

two-strategy game.

3) We give a method to identify stability under a general multi-player two-strategy game.

This relates gradient-based learning in games and control theory.
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The rest of this report is organized as follows. In Sec. II, we review some of the related

works. In Sec. III, we argue that quantum games without entanglement are identical to

classical games. In Sec. IV, we provide the sufficient condition for quantum advantage in

a two-player two-strategy game and discuss the stability issue of the Nash equilibrium. In

Sec. V and Sec. VI, we generalize the model to the multi-player two-strategy game and the

two-player multi-strategy game, respectively. After that, we give some future works in Sec.

VII. Finally, we draw our conclusions in Sec. VIII.

II. RELATED WORKS

Clauser et al. propose the CHSH game, the most renowned non-local game that demon-

strates quantum advantage [2]. When no communication is allowed, the optimal winning

probability in the CHSH game using classical strategies is 75%, but 85% when allowing

entanglement. The separation between classical and quantum game theory is the different

resources allowed, just like the difference between classical and quantum communication.

Eisert et al. lay the foundations of quantum game theory [4]. Though they only discuss

the prisoner’s dilemma, a symmetric two-player game, it identifies the essential elements in

a quantum game. As Fig. 1 has shown, a quantum game consists of an initial state (�̂ |�〉)
for each player, a method each player can manipulate its state (*̂�and *̂�), and a measuring

device.

Fig. 1. The setup of a two-player quantum game from [4]

This model is generalized in [5] and [6]. Benjamin et al. generalizes the two-player two-

strategy model to multi-player quantum games [5]. Though the approach in [5] is similar

to that in [4], as can be seen in Fig. 2, it gives us an interpretation of this model. The

construction of the game can be viewed as the flow of information, clearly relating quantum

game theory to quantum information.

Bolonek-Lasoń et al. generalizes the two-player two-strategy model to two-player multi-

strategy quantum games [6]. To make its model generalizable, they introduce a lot of param-

eters to control the degree of entanglement between the two players’ strategies. For example,

�̂ in [4] is generalized to the equation (30) in [6], which is quite complicated.
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Fig. 2. The setup of a multi-player quantum game from [5]

Solmeyer et al. discusses two-player Bayesian quantum games [7]. One player has two

types. Thus, we can view the whole game as randomization of two games. The two payoff

matrices for the two games are shown in Fig. 3. The upper game is symmetric, while the

lower one is not. It seems that whether the game is symmetric or not does not affect the

circuit formulation much.

Fig. 3. The payoff matrices of a Bayesian quantum game from [7]

Aoki et al. discusses repeated quantum games [8]. Moreover, [8] explores some properties

of infinitely repeated quantum games, whose properties are quite different from stage games or

finitely repeated quantum games. However, [8] only analyzes the repeated prisoner’s dilemma

in a particular case. How to use the techniques in [8] in other areas deserves more future

research.

Besides the theoretical part of quantum game theory, the followings are examples of game

theory in real applications.

Zhang et al. discusses quantum gambling based on the concept of Nash equilibrium [9].

It discusses a mechanism for gambling that does not require a trusted third party and that

guarantees the existence of a Nash equilibrium. The benefit of not requiring a trusted third
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party makes it more feasible for fair gambling. The existence of a Nash equilibrium makes

the players’ strategies more predictable.

In [10], game theory is used to analyze the behaviors of the sender, the receiver, and the

eavesdropper in a BB84 communication system. The result is a Nash equilibrium with each

player randomly choosing between the two bases. Though [10] uses the concept of game

theory, in particular Nash equilibrium, to analyze a quantum communication system, its game

model is classical without a quantum strategy. Thus, [10] gives us little insight into quantum

game theory but a simple attempt to use game theory in the field of quantum communication.

III. QUANTUM GAME WITHOUT ENTANGLEMENT AND CLASSICAL GAME

In this section, we will demonstrate that a quantum game without entanglement is exactly

the same as a classical static game with discrete strategy sets. That is, superposition alone

can not provide quantum advantage. Note that different settings may lead to different results.

We use the framework in [4], which is the most widely used structure of a quantum game.

A. Two-Player Two-Strategy Game

First, we consider a two-player two-strategy game. Each player has two strategies: 0 or 1.

To turn it into a quantum game, we can transform the strategy to |0〉 and |1〉. More generally,

we can follow the paradigm in [4], but we consider the case without entanglement. So, we

can get the following. ��k 5 〉 = (*� ⊗ *�) |k8〉 (1)

|k8〉 is the initial two-qubit state, which is known to both players. *� and *�, unitary

matrices, are the strategies of the players.
��k 5 〉 is the final two-qubit state, which will then

be measured to determine the payoffs of both players.

TABLE I

TWO-PLAYER TWO-STRATEGY GAME

Payoff
B

1 2

A
1 '�(00), '� (00) '�(01), '� (01)
2 '�(10), '� (10) '�(11), '� (11)
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The payoffs are given in Table. I. Note that we only consider the first player Alice’s payoff

to simplify the calculations. Alice’s payoff can be expressed as follows.

'� = '� (00)%(00) + '� (01)%(01)

+ '� (10)%(10) + '� (11)%(11)
(2)

%(01), where 0 = 0, 1 and 1 = 0, 1, is
��〈01��k 5 〉��2. If we take |k8〉 as |00〉, %(01) can be

written as follows. Note that the selection of |k8〉 does not affect the calculations as long as

it is not entangled.
%(01) =

��〈01��k 5 〉��2
= | (〈0 | ⊗ 〈1 |) (*� ⊗ *�) ( |0〉 ⊗ |0〉|2

= | (〈0 |*� |0〉)(〈1 |*� |0〉) |2

=
��*�00

��2��*�10

��2
(3)

Thus, we can view this expression as a mixed strategy with Alice plays 0 with probability

*2
�00

and 1 with probability*2
�10

, and Bob plays 0 with probability*2
�00

and 1 with probability

*2
�10

. Also, since *� and *� are unitary matrices,
��*�00

��2+��*�10

��2 = 1 and
��*�00

��2+��*�10

��2 = 1.

Thus, the expression is a valid probability distribution. Therefore, every quantum strategy

without entanglement in a two-player two-strategy game can be converted to a mixed strategy,

and vice versa.

Note that while we only consider each player applying a unitary matrix, each player can

also apply different matrices according to a probability distribution. This is the quantum

version of mixed strategies. However, the solution space of this kind of strategy will still be

the same as that in the classical mixed strategies.

B. Two-Player Multi-Strategy Game

Now, we consider a two-player multi-strategy game. Without loss of generality, we assume

that Alice has 2< strategies and Bob has 2= strategies. Then, we can write down %(01), where

0 = 0, 1, ..., 2< − 1 and 1 = 0, 1, ..., 2= − 1, as follows.

%(01) =
��〈01��k 5 〉��2

=

���(〈0 | ⊗ 〈1 |) (*� ⊗ *�) ( |0〉⊗2< ⊗ |0〉⊗2=
���2

=

���(〈0 |*� |0〉⊗2<) (〈1 |*� |0〉⊗2=)
���2

=
��*�00

��2��*�10

��2
(4)
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Therefore, the result is the same as that in the two-player two-strategy game. Every quantum

strategy without entanglement in a two-player multi-strategy game can be converted to a

mixed strategy, and vice versa.

C. Multi-Player Multi-Strategy Game

Finally, we consider a multi-player multi-strategy game. Without loss of generality, we

assume that there are n players and each player 8, 8 = 1, 2, ..., =, has 2<8 strategies. Then, we

can write down %(0102...0=), where 08 = 0, 1, ..., 2<8 − 1, as follows.

%(0102...0=) =
��〈0102...0=

��k 5 〉��2
=

�����( =∏
8=1
⊗ 〈08 |) (

=∏
8=1
⊗*8) (

=∏
8=1
⊗ 〈0|2<8 )

�����2
=

����� =∏
8=1
〈08 |*8 |0〉⊗2<8

�����2
=

=∏
8=1

���*8080 ���2
(5)

Therefore, the result is the same as that in the two-player multi-strategy game. Every quan-

tum strategy without entanglement in a multi-player multi-strategy game can be converted to

a mixed strategy, and vice versa.

IV. QUANTUM TWO-PLAYER TWO-STRATEGY GAME

In this section, we first analyze the utility and stability issues of a Nash equilibrium

under a particular initial state: |00〉+|11〉√
2

. Then, we analyze the quantum Nash equilibria using

different Bell states as initial states. Although different initial states may lead to different

Nash equilibria, they all have similar structures. Thus, we can say that the resulting Nash

equilibria are the same up to some unitary transformations. We will demonstrate this result in

more detail in the next section when considering multiple players, so we omit some details

in this section.

A. q = |00〉+|11〉√
2

In this subsection, we will prove that %(00) = %(11) and %(01) = %(10).
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First, note that the initial state is d�� = |q〉 〈q |, where q = |00〉+|11〉√
2

. Then we have the

following, where 〈�, �〉� denotes the Frobenius inner product of � and �.

Tr[d��Π� ⊗ Π�]

= Tr
d�� ©­«

0 1

2 3

ª®¬ ⊗ ©­«
4 5

6 ℎ

ª®¬


=
1
2
(04 + 1 5 + 26 + 3ℎ)

=
1
2
〈Π★�,Π�〉�

(6)

Then, we parameterize Π0
�

and Π0
�

. We parameterize Π0
�
= |D〉 〈D |, where |D〉 = cos \�2 |0〉+

sin \�
2 4

8q� |1〉. We parameterize Π0
�
= |F〉 〈F |, where |F〉 = cos \�2 |0〉 + sin \�

2 4
8q� |1〉. There-

fore, we have the following.

Π0
� =

©­«
cos2 \�

2 cos \�2 sin \�
2 4
−8q�

cos \�2 sin \�
2 4

8q� sin2 \�
2

ª®¬ (7)

Π0
� =

©­«
cos2 \�

2 cos \�2 sin \�
2 4
−8q�

cos \�2 sin \�
2 4

8q� sin2 \�
2

ª®¬ (8)

So, we can get the probability distribution over all the outcomes as the following.

%(00) = 1
2
〈Π0★

� ,Π
0
�〉� (9)

%(01) = 1
2
〈Π0★

� , � − Π
0
�〉� (10)

%(10) = 1
2
〈� − Π0★

� ,Π
0
�〉� (11)

%(11) = 1
2
〈� − Π0★

� , � − Π
0
�〉� (12)

Based on Tr
[
Π0
�

]
= Tr

[
Π0
�

]
= 1, we can get the following equations.

〈�,Π0
�〉� + 〈Π

0★
� , �〉� = 2 (13)

〈�,Π0
�〉� = 〈Π

0★
� , �〉� (14)

Therefore, the solution space is restricted to %(00) = %(11) and %(01) = %(10).
Then, we will solve the Nash equilibria.

'� =
'� (01) + '� (10)

2
〈Π0★

� , � − Π
0
�〉�

+ '� (00) + '� (11)
2

〈Π0★
� ,Π

0
�〉�

=
'� (00) + '� (11) − '� (01) − '� (10)

2
〈Π0★

� ,Π
0
�〉�

+ '� (01) + '� (10)
2

(15)
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'� =
'� (01) + '� (10)

2
〈Π0★

� , � − Π
0
�〉�

+ '� (00) + '� (11)
2

〈Π0★
� ,Π

0
�〉�

=
'� (00) + '� (11) − '� (01) − '� (10)

2
〈Π0★

� ,Π
0
�〉�

+ '� (01) + '� (10)
2

(16)

Thus, solving the Nash equilibria of the game corresponds to solving the Nash equilibria

of 〈Π0★
�
,Π0

�
〉� . Now, we write down 〈Π0★

�
,Π0

�
〉� explicitly.

〈Π0★
� ,Π

0
�〉�

= cos2 \�
2

cos2 \�
2
+ sin2 \�

2
sin2 \�

2

+ 2 cos
\�

2
sin

\�

2
cos

\�

2
sin

\�

2
cos (q� + q�)

(17)

Next, by differentiating 〈Π0★
�
,Π0

�
〉� with respect to different variables, we have the fol-

lowing.
m〈Π0★

�
,Π0

�
〉�

m\�

= cos
\�

2
sin

\�

2
(sin2 \�

2
− cos2 \�

2
)

+ (cos2 \�
2
− sin2 \�

2
) cos

\�

2
sin

\�

2
cos (q� + q�)

= −1
2

sin \� cos \� +
1
2

cos \� sin \� cos (q� + q�)

(18)

m〈Π0★
�
,Π0

�
〉�

mq�

= −2 cos
\�

2
sin

\�

2
cos

\�

2
sin

\�

2
sin (q� + q�)

= −1
2

sin \� sin \� sin (q� + q�)

(19)

m〈Π0★
�
,Π0

�
〉�

m\�

= −1
2

cos \� sin \� +
1
2

sin \� cos \� cos (q� + q�)
(20)

m〈Π0★
�
,Π0

�
〉�

mq�

= −1
2

sin \� sin \� sin (q� + q�)
(21)

The above equations should all equal to 0, so we have three situations: sin \� = 0, sin \� =

0, or sin q� = 0, where q� = q� + q�.
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When sin \� = 0, we have sin \� = 0 and q� can be any number. When sin \� = 0, we

have sin \� = 0 and q� can be any number. Therefore, the two situations become the same

one.

From the analysis, we find out that '(00) +'(11) ≥ '(01) +'(10) is a sufficient condition

for %(00) = %(11) = 0.5 being a Nash equilibrium. As such, we can break the prisoner’s

dilemma if ' +% ≥ ( +) , where we have used the definitions in Fig. 4. This result is similar

to that in [11] in that the payoff matrix determines whether quantum strategies are better

than classical ones.

Fig. 4. An example of canonical prisoner’s dilemma from [12]

B. Stability when q = |00〉+|11〉√
2

According to [13], define l(G) = (�1 51(G), �2 52(G)) to be the vector of player derivatives

of their own payoff functions with respect to their own choice variables, we have the

following.

Definition 1 (LASE). A point G ∈ - is a locally asymptotically stable equilibrium of the

continuous time dynamics ¤G = l(G) if l(G) = 0 and '4(_) > 0 for all _ ∈ B?42(�l(G)).

Suppose q = |00〉+|11〉√
2

, we have the following, where '�) =
'�(00)+'�(11)−'�(01)−'�(10)

2

�\� 51(G)

= −(1
2

sin \� cos \� +
1
2

cos \� sin \� cos (q� + q�))'�)
(22)

�2
\�
51(G)

= (−1
2

cos \� cos \� +
1
2

sin \� sin \� cos (q� + q�))'�)
(23)

�q��\� 51(G)

=
1
2

cos \� sin \� sin (q� + q�)'�)
(24)
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�q� 51(G)

= −1
2

sin \� sin \� sin (q� + q�)'�)
(25)

�\��q� 51(G)

= −1
2

cos \� sin \� sin (q� + q�)'�)
(26)

�2
q�
51(G)

= −1
2

sin \� sin \� cos (q� + q�)'�)
(27)

Also, we have the following Jacobian. If sin \� = sin \� = 0, l(G) = 0, and �l(G) is the

following.

�l(G) = ©­«
�2

1 51(G) �21 51(G)
�12 52(G) �2

2 52(G)
ª®¬ (28)

�2
1 51(G) =

©­«
�2
\�
51(G) �q��\� 51(G)

�\��q� 51(G) �2
q�
51(G)

ª®¬
=

©­«
−'�) cos \� cos \�

2 0

0 0
ª®¬

(29)

�21 51(G) =
©­«
�\��\� 51(G) �q��\� 51(G)
�\��q� 51(G) �q��q� 51(G)

ª®¬
=

©­«
−'�) cos \� cos \� cos q�

2 0

0 0
ª®¬

(30)

�12 52(G) =
©­«
−'�) cos \� cos \� cos q�

2 0

0 0
ª®¬ (31)

�2
2 52(G) =

©­«
−'�) cos \� cos \�

2 0

0 0
ª®¬ (32)

We have _ = 0 corresponding to (0, 1, 0, 0)) and (0, 0, 0, 1)) . For another _, we would like

to solve ('�) (0 + cos q), 0, '�) (0 cos q + 1), 0) = _(0, 0, 1, 0). Then, we have '�) cos q02 +
('�) − '�) )0 + '�) cos q, and _′2 − ('�) + '�) )_′ + '�)'�) (1 − cos2 q), where _′ =

− cos \� cos \�
2 _. We have _′1 +_

′
2 = '�) + '�) , and _′1_

′
2 = '�)'�) (1− cos2 q), so _′1 ≥ 0, and

_′2 ≥ 0. Thus, to have an LASE, we must have cos \� cos \� = −1.
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C. q = |01〉+|10〉√
2

First, note that the initial state is d�� = |q〉 〈q |, where q = |01〉+|10〉√
2

. Then we have the

following, where Π̃� is the matrix obtained by rotating each element of Π� by a half circle

with respect to the center. That is Π̃� (8 9) = Π� (8̄ 9̄). Also, using the qubit representation, we

have \̃� = c/2 − \� and q̃� = −q�

Tr[d��Π� ⊗ Π�]

= Tr
d�� ©­«

0 1

2 3

ª®¬ ⊗ ©­«
4 5

6 ℎ

ª®¬


=
1
2
(0ℎ + 16 + 2 5 + 34)

=
1
2
BD<(Π� ◦ Π̃�)

(33)

So, we can get the probability distribution over all the outcomes as the following. Thus,

%(00) = %(11) and %(01) = %(10).

%(00) = 1
2
(0ℎ + 16 + 2 5 + 34) (34)

%(01) = 1
2
(0(1 − ℎ) + 16 + 2 5 + 3 (1 − 4)) (35)

%(10) = 1
2
((1 − 0)ℎ + 16 + 2 5 + (1 − 3)4) (36)

%(11) = 1
2
((1 − 0) (1 − ℎ) + 16 + 2 5 + (1 − 3) (1 − 4)) (37)

Then, we will solve the Nash equilibria.

'� = ('� (01) + '� (10))%(01)

+ ('� (00) + '� (11))%(00)
(38)

'� = ('� (01) + '� (10))%(01)

+ ('� (00) + '� (11))%(00)
(39)

D. q = |00〉−|11〉√
2

First, note that the initial state is d�� = |q〉 〈q |, where q = |00〉−|11〉√
2

. Then we have the

following.
Tr[d��Π� ⊗ Π�]

= Tr
d�� ©­«

0 1

2 3

ª®¬ ⊗ ©­«
4 5

6 ℎ

ª®¬


=
1
2
(04 − 1 5 − 26 + 3ℎ)

(40)
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So, we can get the probability distribution over all the outcomes as the following. Thus,

%(00) = %(11) and %(01) = %(10).

%(00) = 1
2
(04 − 1 5 − 26 + 3ℎ) (41)

%(01) = 1
2
(0(1 − 4) − 1 5 − 26 + 3 (1 − ℎ)) (42)

%(10) = 1
2
((1 − 0)4 − 1 5 − 26 + (1 − 3)ℎ) (43)

%(11) = 1
2
((1 − 0) (1 − 4) − 1 5 − 26 + (1 − 3) (1 − ℎ)) (44)

E. q = |01〉−|10〉√
2

First, note that the initial state is d�� = |q〉 〈q |, where q = |01〉−|10〉√
2

. Then we have the

following.
Tr[d��Π� ⊗ Π�]

= Tr
d�� ©­«

0 1

2 3

ª®¬ ⊗ ©­«
4 5

6 ℎ

ª®¬


=
1
2
(0ℎ − 16 − 2 5 + 34)

(45)

So, we can get the probability distribution over all the outcomes as the following. Thus,

%(00) = %(11) and %(01) = %(10).

%(00) = 1
2
(0ℎ − 16 − 2 5 + 34) (46)

%(01) = 1
2
(0(1 − ℎ) − 16 − 2 5 + 3 (1 − 4)) (47)

%(10) = 1
2
((1 − 0)ℎ − 16 − 2 5 + (1 − 3)4) (48)

%(11) = 1
2
((1 − 0) (1 − ℎ) − 16 − 2 5 + (1 − 3) (1 − 4)) (49)

V. QUANTUM MULTI-PLAYER TWO-STRATEGY GAME

A. q = |00...0〉+|11...1〉√
2

We assume there are = players, each with two strategies. First, note that the initial state

is d = |q〉 〈q|, where q = |00...0〉+|11...1〉√
2

. Then we have the following, where � ◦ � denotes

the Hadamard product of matrices � and �, and BD<(�) denotes the summation of all the

elements in �. Note that 〈�★, �〉� = BD<(� ◦ �).

Tr[dΠ1 ⊗ Π2 ⊗ ... ⊗ Π=]

=
1
2
BD<(Π1 ◦ ... ◦ Π=)

(50)
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Now, we would like to show that %(00...0) = %(11...1) = 0.5 is a Nash equilibrium no

matter the payoff matrix.

Suppose cos \ 9 = 1, sin \ 9 = 0, 9 ≠ 8. Obviously, cos \8 = 1, sin \8 = 0 is a best response for

player 8 when '8 (00...0) + '8 (11...1) ≥ '8 (11...0...1) + '8 (00...1...0) as demonstrated below.

'8 =
cos2 \8

2
2

'8 (00...0...0) +
sin2 \8

2
2

'8 (11...0...1)

+
1 − cos2 \8

2
2

'8 (00...1...0) +
1 − sin2 \8

2
2

'8 (11...1...1)

=
cos2 \8

2
2
('8 (00...0) + '8 (11...1))

+
sin2 \8

2
2
('8 (11...0...1) + '8 (00...1...0))

(51)

Thus, a sufficient condition for %(00...0) = %(11...1) = 0.5 being a Nash equilibrium is

'8 (00...0) + '8 (11...1) ≥ '8 (11...0...1) + '8 (00...1...0),∀8.

B. q = 0+0̄√
2

We assume there are = players, each with two strategies. First, note that the initial state is

d = |q〉 〈q |, where q = 0+0̄√
2

. Note that 0 + 0̄ = 2= + 1, and d is a matrix with only four non-

zero elements. That is, d(00) = d(00̄) = d(0̄0) = d(0̄0̄) = 1. Then we have the following,

where � ◦ � denotes the Hadamard product of matrices � and �, and BD<(�) denotes the

summation of all the elements in �. Note that 〈�★, �〉� = BD<(� ◦ �).

Tr[dΠ1 ⊗ Π2 ⊗ ... ⊗ Π=]

=
1
2
BD<(

∏
◦Π0̄8

8
Π̃8

08 )
(52)

Note that as long as the initial state is achieved by a sequence of one-qubit unitary

transformations of q = |00...0〉+|11...1〉√
2

, the Nash equilibrium is also a unitary transformation of

the original one, i.e., cos \8 = 0,∀8. For example, the Nash equilibrium for q = |++...+〉+|−−...−〉√
2

is Π8 = |+〉 〈+| ,∀8.

VI. QUANTUM TWO-PLAYER MULTI-STRATEGY GAME

We assume there are two players, each with 2= strategies. First, note that the initial state is

d�� = |q〉 〈q|, where q =
∑
G∈{0,1}= |G〉|G〉

2=/2 . Then we have the following, where 〈�, �〉� denotes

the Frobenius inner product of � and �.

Tr[d��Π� ⊗ Π�]

=
1
2=
〈Π★�,Π�〉�

(53)
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The strategy of each player is the value of 2= PVM matrices with the summation of the

matrices equal to the identity matrix. That is, we have the following. Note that each matrix

is of dimension 2= × 2=.
2=−1∑
8=0

Π8� = � (54)

2=−1∑
8=0

Π8� = � (55)

We aim to explore whether %(GG) = 1/2=, G = {0, 1}= is a Nash equilibrium. Assume that

for 8 = 0, 1, ..., 2= − 1, Π8
�

is a matrix with only one non-zero element Π8
�
(88) = 1. We want

to find out the best response of player �.

Put it more rigorously, we have the following payoff to maximize, and we want to find

the sufficient condition for Π8
�

being a matrix with only one non-zero element Π8
�
(88) = 1

for 8 = 0, 1, ..., 2= − 1.

'� =
1
2=

2=−1∑
8=0

2=−1∑
9=0

Π8� ( 9 9)'� (8 9) (56)

Note that we also have
∑2=−1
9=0 Π8

�
( 9 9) = 1 because these matrices have trace one. Therefore,

we have <2 variables to determine, where < = 2=, and we have 2< − 1 linearly independent

equations corresponding to the < trace constraints and (54). A sufficient condition is '� (88) ≥∑
9≠8 '� (8 9) for 8 = 0, 1, ..., 2= − 1. Note that this condition is similar to the definition of a

diagonally dominant matrix.

On the other hand, if we only require
∑
8 '� (88) ≥

∑
8

∑
9≠8 '� (8 9) for 8 = 0, 1, ..., 2= − 1,

we may get a higher payoff without Π8
�

being a matrix with only one non-zero element. We

give an example below.

Consider < = 3. Π0
�
(00) = Π1

�
(11) = 0.8, Π0

�
(11) = Π1

�
(00) = 0.2, Π0

�
(22) = Π1

�
(22) = 0.

Also, Π2
�

is a matrix with only one non-zero element Π2
�
(22) = 1. Obviously, as long as

'� (22) is large enough, and '� (11) or '� (22) is small enough, we can get a higher payoff.

VII. FUTURE WORKS

There are some areas for which we have researched, but have not obtained a general result.

We provide them as future works listed below.

A. Graph States

Instead of using Bell states and GHZ states as initial states, we would also use graph states

or cluster states to account for more general entangled states. The graph states describe a set
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of qubits with pair-wise entanglement between some of them. Thus, they are more reasonable

initial states in real quantum communication systems, where it is easier to have pair-wise

entanglement. We consider a graph � = (+, �), where + is the set of all vertices (players),

and � is the set of all edges. The mathematical formulation is given by the following equation

from [14], where * (8, 9) is the controlled-Z interaction between 8 and 9 .

d =
∏
(8, 9)∈�

* (8, 9) |+〉⊗8 (57)

B. Stability

As in the two-player two-strategy games, we would like to discuss the stability issue

in other types of games. We give a formula for the multi-player two-strategy game in the

following.

Suppose q = |00...0〉+|11...1〉√
2

, we have the following.

�8 58 (G)11 =
1
2

∑
0∈{0,1}=

'8 (0)
∏

Π
0̄ 9

811
(� − Π811)0 9 (58)

C. Multi-Player Multi-Strategy Game

After analyzing the two-player two-strategy game, the multi-player two-strategy game, and

the two-player multi-strategy game, a natural extension is the analysis of the multi-player

multi-strategy game. This game structure is challenging to analyze due to the enormous

number of parameters. However, we believe the exploration of the multi-player multi-strategy

game is critical in the research of quantum communication and cryptography protocols.

D. Quantum Communication and Cryptography Protocols

The ultimate goal of this research is to utilize quantum game theory to design or analyze

quantum communication and cryptography protocols. Specifically, quantum Internet is a

promising use case for it. However, although quantum Internet has sparked a lot of research

interest since [15], and some researchers have pointed out the directions for it [16], it is

still in its embryonic stage. Therefore, we need to wait for the hardware advancement before

applying the theoretical research in real scenarios.

VIII. CONCLUSIONS

In this research, we try to provide a comprehensive game-theoretic structure for quantum

advantage under different game scenarios. In particular, we have discussed two aspects of
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quantum advantage: utility and stability. First, we provide sufficient conditions for demonstrat-

ing utility superiority in different game structures. Second, we utilize the concept in control

theory and provide a way to calculate stability. On the other hand, there are two future research

directions. First, we aim to consider more general game structures and properties. Second,

we would like to apply quantum game theory to quantum communication and cryptography

protocols, which pave the way for designing the forthcoming quantum Internet.
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