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Abstract

Quantum game theory utilizes the power of quantum computation: entanglement and superposi-

In particular, without entanglement, quantum games are identical to classical games. However,

there are no general rules for quantum advantage in a quantum game. Therefore, we aim to explore

sufficient conditions for quantum advantage in this paper. In particular, we identify two aspects of

quantum advantage: utility and stability. The first aspect means that quantum strategies can lead to

outcomes unobtainable for classical ones. The second aspect implies that the players will naturally

fall into the quantum Nash equilibrium through gradient-based learning. Thus, this paper provides

more insights into quantum advantage and non-local games.

1)

2)

3)

4)

5)

6)

7

8)

The overview of this report is given below.
Sec. I: We give an introduction to quantum game theory and its relationship with quantum
communication and cryptography.
Sec. II: We review some of the related works regarding non-local games, quantum game
theory, and their applications.
Sec. III: We give a mathematical description of the relationship between quantum games
without entanglement and classical games.
Sec. IV: We provide a sufficient condition for quantum advantage in a two-player two-strategy
game and discuss the stability issue of the Nash equilibrium.
Sec. V: We generalize the model of a two-player two-strategy game to a multi-player two-
strategy game.
Sec. VI: We generalize the model of a two-player two-strategy game to a two-player multi-
strategy game.
Sec. VII: We list some future works of the theoretical research and applications of quantum
game theory.

Sec. VIII: We summarize the contributions of this research and draw our conclusions.

Index Terms

game theory, quantum advantage, entanglement, quantum communication, quantum key distri-

bution
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I. INTRODUCTION

With the advent of the Noisy Intermediate-Scale Quantum (NISQ) era [1], many countries
are striving to demonstrate quantum advantages. A critical part of quantum computation and
quantum information is quantum communication. By now, plenty of quantum cryptography
and communication protocols have been proposed. However, how to quantitatively analyze
quantum communication systems is still a huge problem. No general benchmark exists for
quantum cryptography and communication protocols, making it difficult to compare them
or demonstrate quantum advantages. In classical communication, researchers adopt game
theory to compare different systems widely. Therefore, it is natural to use game theory in
the quantum domain.

Nonetheless, there are two challenges for using quantum game theory to analyze quantum
communication networks. First, the current quantum protocols are cooperative rather than
competitive. On the other hand, game theory is most suitable for investigating competitive
scenarios. Therefore, it is better to view the protocols from an optimization viewpoint, where
the goal is to optimize an objective function, instead of the game-theoretic analysis, where
each player has different objectives. Second, large-scale quantum algorithms are hard to
analyze inherently. Thus, before a comprehensive treatment of quantum game theory, it is
more desirable to have a deeper understanding of a simple yet profound quantum game:
non-local games.

Non-local games are widely utilized by researchers to compare classical and quantum
resources because the game structure can quantify quantum advantage. For example, we often
use the CHSH game to demonstrate the separation between classical theories and quantum
ones [2]. The CHSH inequality is a Bell-type inequality, and we can use the CHSH game to
prove Bell’s theorem experimentally [3]. However, past researchers only examined non-local
games from a quantum viewpoint instead of a game-theoretic one. In this research, we aim
to approach non-local games from a game-theoretic point of view.

The main contributions of this research are summarized as follows.

1) We identify two aspects of quantum advantage: utility and stability. To the best of our

knowledge, we are the first to point out the importance of stability in quantum games.

2) We provide a sufficient condition for utility superiority under a general multi-player

two-strategy game.

3) We give a method to identify stability under a general multi-player two-strategy game.

This relates gradient-based learning in games and control theory.



The rest of this report is organized as follows. In Sec. 1I, we review some of the related
works. In Sec. III, we argue that quantum games without entanglement are identical to
classical games. In Sec. IV, we provide the sufficient condition for quantum advantage in
a two-player two-strategy game and discuss the stability issue of the Nash equilibrium. In
Sec. V and Sec. VI, we generalize the model to the multi-player two-strategy game and the
two-player multi-strategy game, respectively. After that, we give some future works in Sec.

VII. Finally, we draw our conclusions in Sec. VIIIL.

II. RELATED WORKS

Clauser et al. propose the CHSH game, the most renowned non-local game that demon-
strates quantum advantage [2]. When no communication is allowed, the optimal winning
probability in the CHSH game using classical strategies is 75%, but 85% when allowing
entanglement. The separation between classical and quantum game theory is the different
resources allowed, just like the difference between classical and quantum communication.

Eisert et al. lay the foundations of quantum game theory [4]. Though they only discuss
the prisoner’s dilemma, a symmetric two-player game, it identifies the essential elements in
a quantum game. As Fig. 1 has shown, a quantum game consists of an initial state (J |C))

for each player, a method each player can manipulate its state (sand Ug), and a measuring

device.
oy — UaH +——O
J | |%o) T |
1C) — U | —d

Fig. 1. The setup of a two-player quantum game from [4]

This model is generalized in [5] and [6]. Benjamin ef al. generalizes the two-player two-
strategy model to multi-player quantum games [5]. Though the approach in [5] is similar
to that in [4], as can be seen in Fig. 2, it gives us an interpretation of this model. The
construction of the game can be viewed as the flow of information, clearly relating quantum
game theory to quantum information.

Bolonek-Lason ef al. generalizes the two-player two-strategy model to two-player multi-
strategy quantum games [6]. To make its model generalizable, they introduce a lot of param-
eters to control the degree of entanglement between the two players’ strategies. For example,

J in [4] is generalized to the equation (30) in [6], which is quite complicated.
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Fig. 2. The setup of a multi-player quantum game from [5]

Solmeyer et al. discusses two-player Bayesian quantum games [7]. One player has two
types. Thus, we can view the whole game as randomization of two games. The two payoff
matrices for the two games are shown in Fig. 3. The upper game is symmetric, while the
lower one is not. It seems that whether the game is symmetric or not does not affect the

circuit formulation much.

AlBy [0y (C)]|1) (D)
0) (O)[[(11,9)] (1, 10)
1) (D)] (10.1) | (6,6)
AlBy [0y (C)[[1) (D)
0) (C)[T(11,9)] (1,6)
1) (D) (10,1) | (6,0)

Fig. 3. The payoff matrices of a Bayesian quantum game from [7]

Aoki et al. discusses repeated quantum games [8]. Moreover, [8] explores some properties
of infinitely repeated quantum games, whose properties are quite different from stage games or
finitely repeated quantum games. However, [8] only analyzes the repeated prisoner’s dilemma
in a particular case. How to use the techniques in [8] in other areas deserves more future
research.

Besides the theoretical part of quantum game theory, the followings are examples of game
theory in real applications.

Zhang et al. discusses quantum gambling based on the concept of Nash equilibrium [9].
It discusses a mechanism for gambling that does not require a trusted third party and that

guarantees the existence of a Nash equilibrium. The benefit of not requiring a trusted third



party makes it more feasible for fair gambling. The existence of a Nash equilibrium makes
the players’ strategies more predictable.

In [10], game theory is used to analyze the behaviors of the sender, the receiver, and the
eavesdropper in a BB84 communication system. The result is a Nash equilibrium with each
player randomly choosing between the two bases. Though [10] uses the concept of game
theory, in particular Nash equilibrium, to analyze a quantum communication system, its game
model is classical without a quantum strategy. Thus, [10] gives us little insight into quantum

game theory but a simple attempt to use game theory in the field of quantum communication.

III. QUANTUM GAME WITHOUT ENTANGLEMENT AND CLASSICAL GAME

In this section, we will demonstrate that a quantum game without entanglement is exactly
the same as a classical static game with discrete strategy sets. That is, superposition alone
can not provide quantum advantage. Note that different settings may lead to different results.

We use the framework in [4], which is the most widely used structure of a quantum game.

A. Two-Player Two-Strategy Game

First, we consider a two-player two-strategy game. Each player has two strategies: 0 or 1.
To turn it into a quantum game, we can transform the strategy to |0) and |1). More generally,
we can follow the paradigm in [4], but we consider the case without entanglement. So, we

can get the following.

[ ) = (Ua ® Up) ) (1)

|;) is the initial two-qubit state, which is known to both players. U4 and Up, unitary
matrices, are the strategies of the players. |zp f> is the final two-qubit state, which will then

be measured to determine the payoffs of both players.

TABLE I

TWO-PLAYER TWO-STRATEGY GAME

Payoff
1 2

1 | RA(00), Rg(00) | RA4(01),Rg(01)
2 | RA(10), Rp(10) | Ro(11),Rp(11)

A




The payoffs are given in Table. I. Note that we only consider the first player Alice’s payoff

to simplify the calculations. Alice’s payoff can be expressed as follows.

R4 = RA(00)P(00) + R4(01)P(01)
(2)
+ RA(10)P(10) + RAo(11)P(11)

P(ab), where a =0,1 and b =0,1, is |<ab|wf>|2. If we take |;) as |00), P(ab) can be
written as follows. Note that the selection of |¢;) does not affect the calculations as long as
it is not entangled.

2
P(ab) = |(ably )|
= |({al ® (b])(Ua ® Up)(|0) ® |0}

= |(al Ua [0)) ({b| Ug [0))[?
|2

3)

= |UAa() 2|UBb()

Thus, we can view this expression as a mixed strategy with Alice plays 0 with probability
U3,, @nd 1 with probability U} , and Bob plays 0 with probability Uz and 1 with probability
U12310' Also, since U, and Up are unitary matrices, |UA00|2+|UA10|2 =1 and |UB()0|2+|U310|2 =1.
Thus, the expression is a valid probability distribution. Therefore, every quantum strategy
without entanglement in a two-player two-strategy game can be converted to a mixed strategy,
and vice versa.

Note that while we only consider each player applying a unitary matrix, each player can
also apply different matrices according to a probability distribution. This is the quantum
version of mixed strategies. However, the solution space of this kind of strategy will still be

the same as that in the classical mixed strategies.

B. Two-Player Multi-Strategy Game

Now, we consider a two-player multi-strategy game. Without loss of generality, we assume
that Alice has 2™ strategies and Bob has 2" strategies. Then, we can write down P(ab), where

a=0,1,...,2" -1 and b =0,1,...,2" — 1, as follows.
2
P(ab) = [(ably )l
m n 2
= (@l & (U © Up) (100" & [0)°7'
) o @
= |(al Ux 100" (b1 U 0)°)

= |UAa() 2|UBb() |2




Therefore, the result is the same as that in the two-player two-strategy game. Every quantum
strategy without entanglement in a two-player multi-strategy game can be converted to a

mixed strategy, and vice versa.

C. Multi-Player Multi-Strategy Game

Finally, we consider a multi-player multi-strategy game. Without loss of generality, we
assume that there are n players and each player i, i = 1,2, ..., n, has 2" strategies. Then, we

can write down P(aa;...a,), where a; =0, 1,...,2™ — 1, as follows.

P(ayas...a,) = |<a1a2...an|wf>|2

~ ([ Tetan( Jav([ [ 0™
i=1 i=1 i=1

2 &)

2

n
= [ [ ail v 10)*>"
i=1

2 2
UiaiO

i=1
Therefore, the result is the same as that in the two-player multi-strategy game. Every quan-
tum strategy without entanglement in a multi-player multi-strategy game can be converted to

a mixed strategy, and vice versa.

IV. QUANTUM TWO-PLAYER TWO-STRATEGY GAME

In this section, we first analyze the utility and stability issues of a Nash equilibrium
under a particular initial state: %. Then, we analyze the quantum Nash equilibria using
different Bell states as initial states. Although different initial states may lead to different
Nash equilibria, they all have similar structures. Thus, we can say that the resulting Nash
equilibria are the same up to some unitary transformations. We will demonstrate this result in
more detail in the next section when considering multiple players, so we omit some details
in this section.

In this subsection, we will prove that P(00) = P(11) and P(01) = P(10).



First, note that the initial state is pag = |¢) (¢|, where ¢ = %. Then we have the

following, where (A, B)r denotes the Frobenius inner product of A and B.

Tr[paplls ® Ip]
a b e
=Tr |pas ® 7
1
= E(ae+bf+cg+dh)

1
= —(IT%, 11
2( B)F
Then, we parameterize Hg and HO. We parameterize 1'[0 |u) (u|, where |u) = cos % 2 0) +
sin % /%4 [1). We parameterize % = |w) (w|, where |w) = cos % |0 +sin %ez |1). There-

fore, we have the following.

0 os? %A cos HZA sin HZA ~iga
= cos 24 gin 94 pita sin? % 7
2 2 € 2
o cos? 973 cos 923 sin 923 e 9B ®)
B =
cos 923 sin & 03 elts sin? 923

So, we can get the probability dlstrlbutlon over all the outcomes as the following.

P(00) = l<H°*,H%>F ©)
P(01) = —<n0*1 %) r (10)
P(10) = —<1 - TI5%, %) (11)

P(11) = <1 o, 1 - 0%k (12)

Based on Tr[I19] = Tr[I1%] = 1, we can get the following equations.
(I, Y >F+<H D=2 (13)
(LTp)r = (I, Dr (14)

Therefore, the solution space is restricted to P(00) = P(11) and P(01) = P(10).

Then, we will solve the Nash equilibria.

Ry = R4(01) ‘;RA(IO) (0%, 1~ TO)p
+ RA(OO);RA(ll) (HO*,H%>F
_ RA(OO) + RA(ll) - RA(OI) - RA(10)
- 2
+ RA(01)+RA(10)

2

(15)
<HO* HO >F
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_ RB(OI) + RB(IO)
B 2

Rp(00) + Rp(11
_ RB(OO) + RB(II) - RB(Ol) - RB(IO)
B 2
+ RB(Ol) + RB(10)

2

Thus, solving the Nash equilibria of the game corresponds to solving the Nash equilibria

Rp

Mm%, 1 -1%)r

(16)
<H0*7 HOB>F

of (II%*,T1%) . Now, we write down (I1%*, T1%) explicitly.

(Mm%, %) r

0 0 0 0
= cos? 7A cos? TB + sin’ 7A sin’ 73 17)
04

Oa . 0 . Op
+2cos > sin > coSs > sin > cos (pa + Pp)

Next, by differentiating (H%*,H%)F with respect to different variables, we have the fol-

lowing.
¢ Ao, TI9) F
004
3 0a . 64, . ,0p 2 0B
= c0oS — sin — (sin“ — — cos” —
2 2 2 2 (18)

0 0 0 0

+ (cos? TA — sin’ TA) cos 73 sin 73 cos (da + dp)

1 1
=-3 sin @4 cos Op + > cos B4 sinfp cos (P4 + Pp)

(%, 1)

0pa
_ 04 . 64 O . Op . (19)
= -2¢0s > sin > cos > sin > sm(¢A+¢3)

1
== sin@, sinfp sin (¢ + ¢p)

O(IIox, 1%
V" 1 @)
=-3 cos 4 sinfp + > sinf4 cos O cos (dpa + Pp)
O(I*, Y,
¢ 21)
1
=-5 sinf4 sinfgsin (¢4 + Pp)
The above equations should all equal to 0, so we have three situations: sinf4 = 0, sinfp =

0, or sin ¢c = 0, where ¢c = ¢4 + ¢p.
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When sinf4 = 0, we have sinfp = 0 and ¢¢ can be any number. When sinfp = 0, we
have sinf4 = 0 and ¢¢ can be any number. Therefore, the two situations become the same
one.

From the analysis, we find out that R(00)+R(11) > R(01)+R(10) is a sufficient condition
for P(00) = P(11) = 0.5 being a Nash equilibrium. As such, we can break the prisoner’s
dilemma if R+P > S+T, where we have used the definitions in Fig. 4. This result is similar
to that in [11] in that the payoff matrix determines whether quantum strategies are better

than classical ones.

Canonical PD payoff matrix
Blue ed Cooperate | Defect
R T
R S
S P
T P

Cooperate

Defect

and to be a prisoner's dilemma game in the strong sense, the following
condition must hold for the payoffs:

T>R>P>S

Fig. 4. An example of canonical prisoner’s dilemma from [12]

[00)+|11)
V2

According to [13], define w(x) = (D1 fi(x), D2 f2(x)) to be the vector of player derivatives

B. Stability when ¢ =

of their own payoff functions with respect to their own choice variables, we have the

following.

Definition 1 (LASE). A point x € X is a locally asymptotically stable equilibrium of the

continuous time dynamics x = w(x) if w(x) =0 and Re(Ad) > 0 for all 1 € spec(Dw(x)).

Suppose ¢ = %, we have the following, where Rar = RA(OO)+RA(1DERA(OI)_RA“O)
Dy, fi(x)
1 1 (22)
= —(5 sinf4 cos O + > cos B4 sinfpcos (dpa + dp))Rar
Dj, fi(x)
1 1 (23)
= (—5 cos 04 cos Op + > sinf4 sinOg cos (pa + ¢p))Rar
D¢AD9Af1 (.X')
(24)

1
= 5 cos Oasin@psin (¢pa + ¢p)Rar
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D¢Af1 (X)

| (25)
=-3 sin @4 sin O sin (¢4 + ¢p)Rar
Dg, Dy, fi(x)
X (26)
= -5 cos 04 sinfpsin (¢4 + ¢p)Rar
D, fi(x)
(27)

1
= -5 sinf4 sinOg cos (P4 + ¢p)Rar

Also, we have the following Jacobian. If sin64 =sinfp =0, w(x) =0, and Dw(x) is the

following.

Difi(x) Daifi(x)

Dw(x) = (28)
D fa(x) Difa(x)
D2 fi(x) Dy Dy, fi(x)
DYy =[ P .
D@AD¢Af1 (x) D¢Af1 (x)
(29)
__Rar cosfpcosfp 0
_ 2
0 0
DgyDy, f1(x) DgyDy,f1(x)
Dyfix)=| " " i
Dg,Dgy,fi(x) Dy,Dyg, f1(x)
(30)
__Rar cos 84 cosOp cos ¢c 0
_ 2
0 0
__Rpr cosscosbpcos gc 0
Dpfa(x) = ’ (1)
0 0
__Rpr cosfacosbp 0
D3fr(x) = ’ (32)

0 0

We have A = 0 corresponding to (0, 1,0,0)” and (0, 0,0, 1)7. For another A, we would like
to solve (Rar(a+cos¢),0, Rgr(acos¢+1),0) = A(a,0,1,0). Then, we have Rpr cos pa’ +
(Rgr — Rar)a + Rarcos ¢, and 2’2 — (Rar + Rgr)A’ + RarRpr(1 — cos? ¢), where A’ =
—wﬂ. We have A} + A} = Rar + Rpr, and 114, = RarRpr (1 —cos? ¢), so A7 20, and

/1’2 > 0. Thus, to have an LASE, we must have cos 04 cosfpg = —1.
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[01)+]10)
V2

First, note that the initial state is pap = |¢) (#|, where ¢ = %. Then we have the

C. ¢=

following, where I is the matrix obtained by rotating each element of IIz by a half circle
with respect to the center. That is Iz (ij) = ITz(i]). Also, using the qubit representation, we

have 0 = 1/2 — 0 and ¢p = —¢p

Tr[paplla ® 5]

a b e f
=Tr |pas ®
(C d) (8 h) (33)

1
:E(ah+bg+cf+de)

1 -
= Esum(HA oIlp)
So, we can get the probability distribution over all the outcomes as the following. Thus,

P(00) = P(11) and P(01) = P(10).

P(O0) = 3 (ah+ bg + cf + de) (34)

P(O1) = 3(a(1 ~ ) + bg +cf +d(1 - ¢)) 35)
P(IO):%((1—a)h+bg+cf+(1—d)e) (36)
P(ll):%((1—a)(l—h)+bg+cf+(1—d)(1—e)) (37)

Then, we will solve the Nash equilibria.

Ra = (Ra(01) + R4 (10))P(01)

(38)
+ (RA(OO) + RA(ll))P(OO)
Rp = (Rp(01) + Rp(10))P(01)
(39)
+ (Rp(00) + Rp(11))P(00)
_ [00)-|11)
D. ¢ ="
First, note that the initial state is pag = |¢) (#|, where ¢ = %. Then we have the
following.

Tr[paplls ® 5]

=Tr |paB ® (40)
c d g h

1
:E(ae—bf—cg+dh)
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So, we can get the probability distribution over all the outcomes as the following. Thus,

P(00) = P(11) and P(01) = P(10).

P(00) = %(ae —bf—cg+dh) (41)
P(Ol):%(a(l—e)—bf—cg+d(l—h)) (42)
P(lO):%((l—a)e—bf—cg+(1—d)h) (43)

P(11) = 3((1~a)(1 =) = b ~cg + (1~ d)(1 = ) @)
_ [01)-[10)
E ¢="000
First, note that the initial state is pag = |¢) (#|, where ¢ = w. Then we have the
following.

Tr[paplls ® ]

=Tr |pap ® (45)
c d g h

1
= E(ah—bg—cf+de)
So, we can get the probability distribution over all the outcomes as the following. Thus,

P(00) = P(11) and P(01) = P(10).

P(O0) = 3 (ah ~ bg ~ cf +de) (46)
P(Ol):%(a(l—h)—bg—cf+d(1—e)) 47)
P(10) = 3((1 =)k~ bg ~ cf + (1 - d)e) (48)

P(ll):%((1—a)(1—h)—bg—cf+(l—d)(l—e)) (49)

V. QUANTUM MULTI-PLAYER TWO-STRATEGY GAME

_ 100...0)+[11...1)

A ¢ = —n
We assume there are n players, each with two strategies. First, note that the initial state
is p = |¢) (#|, where ¢ = W. Then we have the following, where A o B denotes

the Hadamard product of matrices A and B, and sum(A) denotes the summation of all the

elements in A. Note that (A*, B)r = sum(A o B).

Tr[pll; @ I, ® ... ® I1,,]

1
= Esum(Hl o...oll,)

(50)



15

Now, we would like to show that P(00...0) = P(11...1) = 0.5 is a Nash equilibrium no
matter the payoff matrix.
Suppose cos6; = 1,sin6; =0, j # i. Obviously, cos§; = 1,sinf; = 0 is a best response for

player i when R;(00...0) + R;(11...1) > R;(11...0...1) + R;(00...1...0) as demonstrated below.

cosz% sinz%
R, = > R;(00...0...0) + 7 R;(11...0...1)
1—cosz% 1—sin2%
+TRI-(OO...I...O)+TR1-(11...1...1)
(5D
cos2 %
=— 2 (R;(00...0) + R;(11...1))
sinz%
+ 5 (R;(11...0...1) + R;(00...1...0))

Thus, a sufficient condition for P(00...0) = P(11...1) = 0.5 being a Nash equilibrium is
R;(00...0) + R;(11...1) > R;(11...0...1) + R;(00...1...0), Vi.
B. ¢ =%

We assume there are n players, each with two strategies. First, note that the initial state is
o = |p) (p|, where ¢ = %2‘7 Note that a + @ = 2" + 1, and p is a matrix with only four non-
zero elements. That is, p(aa) = p(aa) = p(da) = p(aa) = 1. Then we have the following,
where A o B denotes the Hadamard product of matrices A and B, and sum(A) denotes the

summation of all the elements in A. Note that (A*, B) = sum(A o B).

Tl‘[le IL®...x11,]

I s a
= Esum(n oI T'II;™")

Note that as long as the initial state is achieved by a sequence of one-qubit unitary

(52)

transformations of ¢ = W, the Nash equilibrium is also a unitary transformation of
the original one, i.e., cos 8; = 0, Vi. For example, the Nash equilibrium for ¢ = %

is I1; = |+) (+], Vi.

VI. QUANTUM TWO-PLAYER MULTI-STRATEGY GAME

We assume there are two players, each with 2" strategies. First, note that the initial state is

oaB = |¢) (¢|, where ¢ = Z”{Ozln—}/zlxm Then we have the following, where (A, B)r denotes

the Frobenius inner product of A and B.
Tr[paplls ® ]

1 (53)
= E(H*,HB#
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The strategy of each player is the value of 2" PVM matrices with the summation of the
matrices equal to the identity matrix. That is, we have the following. Note that each matrix

is of dimension 2" x 2",

211 .

Z I, =1 (54)
i=0

-1

DT = (55)
i=0

We aim to explore whether P(xx) = 1/2",x = {0, 1}" is a Nash equilibrium. Assume that
fori=0,1,...,2" -1, Hg is a matrix with only one non-zero element Hg(ii) = 1. We want
to find out the best response of player A.

Put it more rigorously, we have the following payoff to maximize, and we want to find
the sufficient condition for HZ'A being a matrix with only one non-zero element HiA (i) =1

fori=0,1,...,2" - 1.
2n_12n-1

1 .
Ra=g ) > MaGi)RAG)) (56)

i=0 j=0
Note that we also have 25261 H’A (jj) = 1 because these matrices have trace one. Therefore,

we have m?

variables to determine, where m = 2", and we have 2m — 1 linearly independent
equations corresponding to the m trace constraints and (54). A sufficient condition is R4 (i7) >
> j#i Ra (ij) for i =0,1,...,2" — 1. Note that this condition is similar to the definition of a
diagonally dominant matrix.

On the other hand, if we only require }; Ra(ii) > %; 24 Ra(ij) for i =0,1,...,2" -1,
we may get a higher payoff without Hi‘ being a matrix with only one non-zero element. We
give an example below.

Consider m = 3. T1%(00) = I}, (11) = 0.8, IT§ (11) =TT} (00) = 0.2, 1% (22) = IT}, (22) = 0.
Also, Hi is a matrix with only one non-zero element Hf‘(ZZ) = 1. Obviously, as long as

R4(22) is large enough, and R4 (11) or R4(22) is small enough, we can get a higher payoff.

VII. FUTURE WORKS

There are some areas for which we have researched, but have not obtained a general result.

We provide them as future works listed below.

A. Graph States

Instead of using Bell states and GHZ states as initial states, we would also use graph states

or cluster states to account for more general entangled states. The graph states describe a set
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of qubits with pair-wise entanglement between some of them. Thus, they are more reasonable
initial states in real quantum communication systems, where it is easier to have pair-wise
entanglement. We consider a graph G = (V, E), where V is the set of all vertices (players),
and E is the set of all edges. The mathematical formulation is given by the following equation
from [14], where U""/) is the controlled-Z interaction between i and J.

p=[] v+ (57)
(.))eE

B. Stability

As in the two-player two-strategy games, we would like to discuss the stability issue
in other types of games. We give a formula for the multi-player two-strategy game in the

following.

00...0)+[11...1)

Suppose ¢ = 5

, we have the following.

Difiom =5 3 R [ [0 -11,)% (58)

ac{0,1}"

C. Multi-Player Multi-Strategy Game

After analyzing the two-player two-strategy game, the multi-player two-strategy game, and
the two-player multi-strategy game, a natural extension is the analysis of the multi-player
multi-strategy game. This game structure is challenging to analyze due to the enormous
number of parameters. However, we believe the exploration of the multi-player multi-strategy

game is critical in the research of quantum communication and cryptography protocols.

D. Quantum Communication and Cryptography Protocols

The ultimate goal of this research is to utilize quantum game theory to design or analyze
quantum communication and cryptography protocols. Specifically, quantum Internet is a
promising use case for it. However, although quantum Internet has sparked a lot of research
interest since [15], and some researchers have pointed out the directions for it [16], it is
still in its embryonic stage. Therefore, we need to wait for the hardware advancement before

applying the theoretical research in real scenarios.

VIII. CONCLUSIONS

In this research, we try to provide a comprehensive game-theoretic structure for quantum

advantage under different game scenarios. In particular, we have discussed two aspects of
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quantum advantage: utility and stability. First, we provide sufficient conditions for demonstrat-

ing utility superiority in different game structures. Second, we utilize the concept in control

theory and provide a way to calculate stability. On the other hand, there are two future research

directions. First, we aim to consider more general game structures and properties. Second,

we would like to apply quantum game theory to quantum communication and cryptography

protocols, which pave the way for designing the forthcoming quantum Internet.
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