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A noise characterization and analysis method
based on Bloch sphere dynamics
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Abstract

Quantum simulations of chemical systems remain the most promising target

applications of near-term quantum computers. Yet, the small size and significant noise

levels of quantum computers nowadays critically hamper the practicality of the

applications. Current quantum devices are termed noisy intermediate-scale quantum

devices (NISQ devices), which can only do small-scale calculations. Analysis of noises

can be beneficial for protecting quantum information from errors and the development of

NISQ devices. It is critical to understand noises in order to achieve the real-world

application of quantum computers. The primary method of error rate measurement

nowadays is randomized benchmarking (RB). The RB method views all noises from

different gates as the same; however, various quantum gates have different types of noises,

which is worth discussing.

In this research, we develop a method to quantitatively identify the noises of

quantum gates and systematically analyze noises in the IBM-Q systems. By fitting the

Bloch sphere dynamics with the quantum master equation, we can obtain information

about noises in the experiment. In other words, we can extract the noise information in

the experiment. The detailed noises characterization on quantum computers can be

beneficial for simulating the quantum noises in open quantum system dynamics, which



can be a significant application of NISQ devices. Understanding the detailed mechanism

of the underlying noises about IBM-Q quantum computers is vital for error mitigation

protocols for the future of the quantum computer.
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1 Background
1.1 Noise-prone quantum computer

Quantum computers harness the intrinsic properties of quantum mechanics, which
offer the promise of efficiently solving specific problems that are intractable for classical
computers.' Quantum computers are believed to solve some computational issues that
are hard for classical computers, such as integer factorization? (which underlies RSA
encryption?), cryptography, search problems, machine learning®, and simulation of
quantum chemical systems®. Quantum computers rely on qubits to store information.
However, qubits are fragile that their stored quantum information can be scrambled easily.
In addition, the preparation and the measurement of the quantum state could cause noise.
Noises make quantum computers error-prone, and they are the central obstacles to
building large-scale quantum computers and make computing results unreliable. Under
current restrictions, simulation of chemical systems is a focus of NISQ devices.’ (Figure

1.1)
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Figure 1.1 The gap between quantum algorithms and machines. Quantum simulation of
chemical systems is the most promising target application of near-term quantum

computers. The figure is taken from https://arxiv.org/abs/1903.10541

1.2 Randomized benchmarking method

The road to developing and operating devices that would enable quantum
computation has been and continues to be full of obstacles. One of the main challenges
in building a quantum information processor is the non-scalability of completely
characterizing the noise affecting a quantum system. When we got the information in the
system through measurement, the noise from state preparation and measurement (SPAM
errors) that affected qubits would be toke into account. To easily determine the current
system's performance, randomized benchmarking (RB), a scalable and robust algorithm
for benchmarking the full set of Clifford gates by a single parameter using randomization
techniques, is applied to characterize the noise.

To benchmark the noise of gates, the RB sequences are randomly chosen in Clifford


https://arxiv.org/abs/1903.10541

elements and the reversal element, which can make the overall transformation be the

identity. (Figure 1.2) After executing the RB sequences, we measure the system and get

the averaged sequence fidelity for calculating the average error-rate related to the RB

sequences' average performance. The RB method is widely used in many companies, such

as IBM and Google, for its scalability and robustness.

q: XA YHZHXHZHY HAF—
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0

Figure 1.2 Example of the RB sequences. The characters in the blocks present different
quantum gates. We need to notice that twice the Pauli gates (Pauli X, Pauli Y, and Pauli
Z) equals the identity gate, which means that the qubit would be the initial state after
applying these RB sequences.

1.3 Domestic development of quantum computer

Taiwan proposed the concept of establishing a national quantum team by inter-
ministerial associations. By 2026, 8 billion dollars will be invested to promote the
country's technology and talent in this field, and it is finally officially launched. To
develop our quantum computer, scientists contributed many efforts. Taiwan recently
focused on building qubits, which is the base of the quantum computer. The qubit amount

that has been made is about 1-2. There are many types of quantum computers, including



superconducting quantum computers, ion-trapped quantum computers, and

semiconducting quantum computers. No matter which types the quantum computer is,

how to characterize the quantum system and how to calibrate the quantum system is a

matter of concern. An algorithm that focuses on characterizing a basic one-qubit system

will be helpful in this current stage.

1.4 Motivation

In the RB method, we consider the average performance of the RB sequences to

identify the error rate of gates; however, we consider that different gates may have

different kinds of noises. If we average their performance, we may underestimate the error

rate, which can be troublesome when we use some quantum algorithms that majorly use

specific gates. In a nutshell, quantum computers are developing technologies while the

main obstacles are noises. The primary method of noise characterization is too simplified

to analyze the noise. To have a more profound understanding of the behavior of each

quantum gate, we want to establish a method to characterize the basic noise on the

quantum computer, including an analysis of the noise of quantum gates and the

environment.

This research aims to develop a method to analyze noise composition for each



possible quantum gate, decompose the noise into specific simple noise channels, and

design gate sequences to mitigate or transform certain types of quantum noise.

Furthermore, we intend to fully characterize the noises of one qubit system on the IBM-

Q quantum computer in Table 1. The algorithm emphasizes the characterization of

quantum errors based on a dynamical map approach which can be easily imagined over a

quantum dynamic. We expect our study can obtain a better understanding of quantum

noises. It can be beneficial for noise characterization and quantum error correction.

What is more, it can assist the development of quantum computers, including the

simulation of chemical systems. Analysis of noises can be beneficial for protecting

quantum information from errors and the development of NISQ devices. It is critical to

understand noises in order to achieve the real-world application of quantum computers.

Machine Name Qubits Quantum Volume
Paris 27 32
Bogota 5 32
Manhattan 65 32

Table 1. IBM-Q machine examined in this research.



2 Introduction to Quantum Computing

The following section will discuss the basic concept and math, including quantum
bits, density matrix, and Bloch Sphere. Besides, we will also present some theoretical
background, including the open quantum system, markovian process, and Gaussian
distribution.

2.1 Quantum bits (Qubit)

In classic computers, a bit can be in the state 0 or 1. By contrast, a qubit can exist in
a quantum computer in a continuum of states between |0) and |1). Until we observe the
qubit, it will be in its superposition state:

[Y) = al0) + B|1), (2.1.1)
where a and f are complex numbers, called probability amplitude.

When we measure a qubit, we obtain either the result 0, with a probability |a|?, or
the result 1, with probability |B|?. Naturally, |a|? + |B]? = 1, since the probabilities
must sum to one. While the general state of one qubit is

[y = cos§|0)+ei‘” singll), (2.1.2)
where 0 and ¢ are real numbers, 0 ranges from 0 to m, and ¢ ranges from Oto 2m. We

can also write the quantum state in a vector notation as



0
coS =

_ 2
) = 0| (2.1.3)
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The numbers 6 and ¢ define a point on the unit three-dimensional unit-sphere, the
Bloch sphere, which provides a useful way of visualizing a single qubit's state. (Figure
2.1) Here we denote the four specific quantum states that are on the point of the X-axis,

Y-axis, and Z-axis:

0= (5) .10 =(?) ,|+)=%(1) ,|—)=%(%), (2.1.4)

10y +il1)

_10)+11) 2

V2
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Figure 2.1 Bloch sphere representation of a qubit state. The four points stand for four

specific quantum states mentioned in equation (2.1.4).

2.2 Density matrix

The state vectors in equation (2.1.3) define the pure quantum states. When the quantum
state is mixed, we can adopt a density matrix® or density operator to describe the quantum
system and its evolution. The evolution of a closed quantum system can be described by

the unitary operator U. If the system was initially in the state |y;) with probability p;

7



then after the evolution has occurred, the system will be in the state U|y;) with
probability p;. With the definition of the density matrix, the evolution of the system can
be described by

u
p= Zpillpi)(lpil - Z p U X UT = UpUT. 2.2.1)
i i
For one qubit system, the density matrix would be a 4 X 4 matrix, and its basis can be

Pauli matrices o; (i =X,Y,Z,I), which are Hermitian and unitary.

0 1

X=a=(;

),X?‘ - X,
(2.2.2)

I=a,=((1) (1)),17‘=1,

where different matrices can represent different gates. (Identity gate means doing
nothing) For one qubit system, the pure density matrix can be expanded by its bases, the

Pauli matrices:

I+ X+nY+nrZ

- (2.2.3)

p

The density matrix can be drawn on the Bloch sphere with the vector v = (ry,17y,7;)
where 7; corresponds to the projection length of the Bloch vector on the i-axis. We can

know the density matrices of mentioned quantum states in equation (2.2.4) by equation

(2.2.5):



1
10)(0] = ((1) g) =SU+2),5 = (00,1

1
nl=() 7)=50-2.5=0©0-1
Lo 1 (2.2.4)
|+)<+|:ﬁ(1 1)=ﬁ(1+x),v=(1,0,0)
1l -y _ 1 .
=-1=(; 7)) =F U+ 5= 010,

We can notice that the Pauli matrix shown in four specific states is related to what

axis the state is on.

2.3 Quantum gate and measurement

When applying the operation on the qubit, we can write the operation into the
mathematical form and visualize the operation by the Bloch sphere. With the density
matrix of the initial state and the different operators with equation (2.2.2), we can map
the density matrix to the Bloch sphere to see how the operators behave. Application of
different gates means rotating the vector (quantum state) 180 degrees around the different
axis on the Bloch sphere. (Figure 2.2) Applying the same Pauli gate twice to the same
qubit can cancel out the operation, which brings us to the following identity:

X2=y2=22=1]. (2.2.5)
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Figure 2.2 Different gates shown on the Bloch sphere.

Quantum operations or quantum gates are performed by sending electromagnetic
impulses at microwave frequencies to the resonator coupled to the qubit. (Figure 2.3)
This frequency resonates with the energy separation between the energy levels for |0) and
[1). As for the measurement, it sends a microwave tone to the resonator and analyzes the
signal it reflects back. The amplitude and phase of the reflected signal depend on the qubit
state. By default, all qubits are initialized in the |0) state in the z-basis. Therefore, qubit

measurement is generally in a z-basis.!”

Resonator: Apply entanglement to

Oubit couple qubits
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Quantum Gate to a qubit

Figure 2.3 IBMQ 5 qubits superconducting quantum computer. Figure is taken from
https://jonathan-hui.medium.com/qc-how-to-build-a-quantum-computer-with-superconducting-
circuit-4c30b1b296cd
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With the interference of the noises, the operator (gate) could have the error that can
display on the Bloch sphere dynamic. For instance, after the ground state |0) is applied
the (X)? gates, the point on the Bloch sphere should stay on the intersection at the sphere
surface and the positive z-axis if the X gate is perfect. The noises make the points a
trajectory on the Bloch sphere. The different noises make the different tendencies of the
behavior of the trajectory. The noise characterization method is major based on Bloch

sphere dynamics in this research.

2.4 Open quantum system

We can view a quantum computer as a device that can simulate a quantum system.
When the quantum computer is still suffering the noises from the environment, we have
to consider the problem as an open quantum system. The open quantum system'' means
that the system we care for interacts with an external quantum system (bath or
environment). If the quantum system is in a closed quantum system, it will retain its
coherence. Still, the interaction between the quantum system and the external quantum
system will happen when we try to control or measure the system. When the system
interacts with the environment, the information might flow or be lost from the system to

the environment, called decoherence. Decoherence errors from the environment affect the

11



qubit state and make the qubit fragile. The schematic picture has shown in Figure 2.4,

where the red pulse represents the operations.

Bath B

Figure 2.4 Schematic picture of an open quantum system.

2.5 Quantum master equations and markovian assumption

To describe the open quantum system dynamics, we can use the quantum master
equation'’, where the master equation is a differential equation that corresponds to the
time evolution. This research views the trajectory result of measurement in a noisy
environment as a stochastic process. If we assume that the process is markovian'!, instead
of the past state and the present state, we only need the present state to know the future
states of the trajectory. In other words, we assume that the correlation time Oty that the
bath needs to lose the information flow from the system forever is very short, and we can
ignore the memory effect of the bath. If we denote Otg as the time takes for the dynamics

we want to observe; the relationship would be:

12



dtg > &tp. (2.5.1)

In this assumption, we use the stochastic Liouville equation'>!® to describe the
system:

PO @01 +p Y (LpOL ~ 3 {LiLp®)), (252)

i

where H is noise Hamiltonian, which is caused by the imperfect gates, p is the error rate
and L; corresponds to noise operator. The first term of the right-hand side of equation
(2.5.2) can be interpreted as the unitary evolution (the length of the Bloch vector keeps
the same) because of the gate error. And the second term can be interpreted as system-
bath coupling. We can choose the proper noise channel to describe the trajectory, and the
quantum operations of the noise channel determine the noise operators’.

Nowadays, several known operation elements exist for important single qubit
quantum operations, such as depolarizing channel, amplitude damping, and phase

damping. In Table 2, we show the detailed operation elements, where p and y are the

error rates.

B 3p1 0 _\/50 1
Ey = 1_7[0 1k = Z[l 0L

Es =\E[fi ol Ei :\E[(l) 2

amplitude damping Ey = [(1) 1/11— )/]’EZ N [g \/0;]

depolarizing channel

, 1 1 0 O
phase damping E,= [0 \/1—_)/] ,E, [O \/;]
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Table 2. Operation elements for important single qubit quantum operations.

2.6 Noise distribution

When processing the noise problem, we often assume that the distribution of the
noises is Gaussian distribution (normal distribution). According to the Central Limit
Theorem (CLT)', the distribution of a set of random variables would be a Gaussian
distribution. The approximation in this theorem is that the sample size is sufficiently large
and random enough. If the distribution is non-Gaussian, we can figure out how non-
Gaussian it is and the possible reasons, such as extreme values, insufficient data size, or
natural limit of hardware. It is important to characterize the noise with these statistical
properties.

Gaussian or
"normal"
distribution

3413 | 3413 ' 1359
| 1 1 |

-3c0 -20 -0 0 (4] 26 30
X

Figure 2.5 Gaussian distribution function. The probability of finding the value is related
to which interval of the standard deviation of the mean the value is within. Figure is taken
from https://jonathan-hui.medium.com/qc-how-to-build-a-quantum-computer-with-
superconducting- circuit-4c30b1b296cd
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3 Methodology

In this study, we aim to observe gate errors by using the identity gate (composed of
multiple Pauli gates) and focus on the one qubit system first for basic noise

characterization

3.1 Characterization of noise-introducing identity gate

As shown in the equation (2.2.5) and Figure 2.2, applying the same Pauli gate twice
to the same qubit should be the same as applying an identity gate. Because the qubit
measurement is generally in z-basis and the Y gate can be decomposed to X gate and
virtual Z gate:

Y =iXZ (3.1.1)

We choose the X gate as our primary object of observation and take the four specific
states mentioned in equation (2.2.4) as the initial states. We can obtain the population by
dividing the number of 0 or 1 when the initial state is |0) or |1) by measurement times.

We run the circuit on an IBM-Q quantum computer to see the performance of the

(X)? gates. (Figure 3.1)

15
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Figure 3.1 Schematic picture of the circuit. The number of (X)? gates are increased to
see the dynamics of the noises. The state preparation operations have not been shown in

this figure.

To prepare the different initial states, we need to apply different gates. All qubits are

initialized in the |0) state:

m=xi=7 ) =) (3.12)
= =50 0= 613
=so =3 () -5 () o

3.2 Quantum state tomography
Apart from the population, we obtain the density matrix by quantum state
tomography and see the Bloch sphere dynamics. Quantum state tomography’ is a method

for determining the quantum state of a system. Since the quantum state can't be directly

16



determined by measurement, we need to perform repeated preparations of the same
quantum state, which is then measured in different ways in order to build up a complete
description of the quantum state. From equation (2.2.5), we know the definition of the
density matrix, which can completely express the quantum state. Suppose we have many

ies of a single qubit density matrix, p. The set = , 2= , o= , —= f th I
copies of a single qubit density matrix, p. The set = , - , =, - forms an orthonorma
set of matrices concerning the Hilbert—Schmidt inner product, so p may be expanded as

tr(p)I +tr(pX)X + tr(pY)Y + tr(pZ)Z
p = .

. (3.2.1)

where tr(pA) equals the average value of observables. The measurement result would

be 0 or 1. We can calculate the observables by the number of measurements (in Z basis):

number of 0) *x 1 + (number of 1) x —1
tr(pZ) = ( 0 ( f 1 : (3.2.2)
numberof measurements

We map the density matrix to the Bloch sphere to obtain further observation. The average
value of observables can form a state vector on the Bloch sphere:
v = (tr(pX), tr(pY), tr(pZ)) = (ry, 1y, 1) (3.2.3)
And the length of the state vector is proportional to the purity:
v = tr(p?). (3.2.4)
With state tomography, we can obtain the density matrix and the Bloch sphere and
construct the Bloch sphere dynamics by gaining the density matrix each time after the

increasing number of (X)? gates. On the other hand, with the known density matrix of

17



initial states mentioned in equation (2.2.8), the density matrix after applying the operator
can be expressed as
E(p) = Z E.pEl, (3.2.5)
K
where E) are operation elements, satisfying E ]Zr E, = 1 if the quantum operation is

trace-preserving.

3.3 Noise information extraction by numerical analysis method

This research aims to extract the noise information in the Bloch sphere dynamics by
numerically analyzing the open system dynamics. By measurement, we can know the
density matrix of each step while the Hamiltonian and the error rate of the noise are
unknown to us. We can use the quantum master equation mentioned in equation (2.5.2)
to describe the open quantum dynamics. We can find the Hamiltonian by considering
whether the evaluated density matrix of the state is close to the experimental result. In

other words, the trace distance of the two matrices should be minimized.

. ||p(tn+1)_ptheory(tn+1)”

T(p, ptheory) - > ’ (3.2.5)

where p is the density matrix obtained in the experiment and pipeory 15 the
theoretically evaluated density matrix. If 7 ('p, Ptheory) = 0, meaning that the

Hamiltonian and the error rate have correctly described the open quantum system.

18



We can use numerical methods to propagate the system with the optimized condition.
The numerical methods we used in this research are the Forward Euler method and the

Crank-Nicolson method.

3.3 The Forward Euler method

The Forward Euler method'” is a simple method to process the differential equation

dy
== f(t,y), (3.3.1)

which is the form of the quantum master equation we care about. By the Taylor expansion
and truncating the equation at the second-order term, we can rewrite the equation as

y(tn+1) = y(tn) + (tn+1 - tn)y,(tn)- (332)

By defining At = t,,; — t,, we can get the equation

y(t + At) —y(b)
At

= f(t,y(t)), (3.3.3)
where y(t) corresponds to the density matrix we get in the experiment, and f (t, y(t))
includes the information of noise Hamiltonian and the error rate.

To check whether the operator in f(t,y(t)) is unitary, we apply the equation to the
Time-Dependent Schrodinger Equation (we set A = 1):

Y(t+ AA?: —¥Y® _ _iHY (). (3.3.4)

By reorganizing the equation, the propagator in this equation is

19



U(0,At) =1 — iHAt. (3.3.5)
And we know that
UUT = (1 —iHAt)(1 + iHAt) # 1. (3.3.6)
Therefore, we know that the Forward Euler method is a first-order explicit numerical
method and its propagation method is non-unitary.
There is another method called the Backward Euler method, which like the Forward

Euler method, is a first-order implicit method.

y(t+At) —y(0)
At

= f(t + At y(t + AD)), (3.3.7)
The local truncation error of the Euler method is approximately proportional to (At)?
and the global error is approximately proportional to At. The large truncation error will
be a significant problem in long-time propagation.

The mathematical detail of the Forward Euler method in this research has been

attached in Appendix A.

3.4 The Crank-Nicolson method
We use the Crank-Nicolson method' to avoid the large truncation error from the
Forward Euler method. The Crank-Nicolson method considers the Forward Euler method

and backward Euler method simultaneously. The equation is

20



y+A) —y(@) 1
At T2

(f(t,y(®) + f(t + At y(t + At))), (3.4.1)

which is both implicit and explicit. To check whether the propagation is unitary, similarly,

we apply the equation to the Time-Dependent Schrodinger Equation and get

WiE+A)-W(E) i R
At = —= (A¥© + A¥( +a0)). (3.4.2)

By reorganizing the equation, the propagator in this equation is

iHAt
) (3.4.3)

U@,At) = (1+ #)‘1(1 —
And we can know that
uut =1. (3.4.4)
This method can process the problem by considering the noise Hamiltonian as the
coherence part from the imperfect gate and the error rate as the decoherence part from the
environment.
The application details of the Crank-Nicolson method in this research has been

attached in Appendix B.

3.5 The Outline of this work
To sum up, everything that has been stated so far: firstly, we start from the (X)?
gates, the identity gate. We observe the change in the fidelity of the population when the

number of (X)? gates are increasing. Secondly, to further understand the effect of the

21



coherence and the decoherence noises, we perform quantum state tomography to obtain

density matrices and observe the purity change during the process. Next, we draw the

Bloch sphere dynamic to look into the major noises of the quantum gate. We utilize the

known noise channel and the quantum master equation to decompose the noise and obtain

the error rates and noise Hamiltonian in each experiment step. After fitting the

experimental result, we can reproduce the Bloch sphere dynamic by the noise channel

and the noise Hamiltonian with the initial condition. Finally, we can extract the

information about noise in the experiment and analyze the noise dynamics during the

experiment and the overall noise information.
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4 Results and Discussion
4.1 Characterization for Pauli gates in one qubit system

As a first step to understanding the qubit dynamics induced by (X)? gates, we
initialized a single qubit in the ground state and applied (X)? gates multiple times. After
the (X)? gates, projective measurement in a computational basis is performed to
calculate the population remaining in the ground state. We plotted the ground state
populations as a function of the number of (X)? gates (Figure 4.1). The results are
grouped according to (a) different times and (b) different physical qubits. In both cases,
the ground state populations significantly decrease, and the dynamics behave as highly-
noisy oscillations. The population then finally reach equilibrium around 0.5 at >1000
(X)? gates. We speculated that two predominating types of error in the X gates could
explain the dynamics. An over-rotation of the X gates results in the population inversion
at the initial stages. Decoherent-type error dominates at many X gates, which drives the
population towards equilibrium. We thus perform further state characterization to assess
the dynamics of the noises induced by (X)? gates. Furthermore, the population dynamics
under different parameters behave very differently, even qualitatively, which also

signifies the highly unstable nature of the gate noises.
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Figure 4.1 Single qubit population dynamics for the (X)? gates. Ground state
populations as functions of the number of applied X? gates are plotted. In (a), the
experiments were performed on different days (8/9 and 8/10) but same physical qubit. In
(b), the two experiments are performed on different physical qubits. All experiments were

performed on ibmq_ourense.

The purity changes of the four initial states are shown in Figure 4.2. When the initial
state is |[+), the change of purity shows special stability. Hence, we turn to see the Bloch
sphere dynamics to achieve further (Figure 4.3). Finding that the huge amount of (X)?
gates caused the vector of the density matrix to move around the axis of X, and the length
of the vector decreased with the increasing number of (X)? gates. When the initial state
is [+), the vector on the Bloch sphere is right on the X-axis, the influence of rotation from
(X)? gates would be smaller. We find that (X)? gates cause similar noise, which makes
the vector on the Bloch sphere rotate and be shorter. Consequently, we analyze the
composition of noise described by the depolarizing noise channel and Rx form. We

replace (X)? gates with Ry and consider the depolarizing channel by using operator-
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sum representation. Besides, we also see the Bloch sphere dynamics of (Z)? gates
(Figure 4.4). We find that no matter how much (Z)? gates we apply, the vector of the
density matrix stays on its initial position, which means that the gate error of the Z gate
is near zero. It is appreciable because the Z gate on IBM-Q quantum computers can be

implemented virtually in hardware via frame changes.

(@ (b)

Ha @

2 0 “w !i « “0
# of XX pulse # of XX pulse

Figure 4.2 Single qubit purity changes for the (X)? gate. In each subplot, the state purity
as a function of the number of applied (X)? gates are plotted. (a) - (d) corresponds to the
initial state = |0), [1), |+), |—), respectively. All experiments were performed on

ibmq_bogota.
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(c) 0) (d) 0)

Figure 4.3 Bloch Sphere Dynamics for the (X)? Gate Sequences. We initialize the qubit
in different initial states, [0), [1), [+), |-), and apply(X)? gates from 0~300 times to
analyze the dynamics. A dot represents the Bloch vector for the single-qubit state, and the
dot is traced continuously with an increasing number of (X)? gates. (a)-(d) all show the
effect of rotating around the X-axis and shortening towards the center. All experiments

were performed on ibmq_bogota.

(a) j0) (b) j0)

1) 11)
[0) 1)
(c) 0) (d) [0)
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[+) (=)
Figure 4.4 Bloch sphere dynamics for the (Z)? gate sequences. The initial states of (a),
(b), (¢), (d) are |0), |1}, [+), |-), respectively. We initialize the qubit in four basis state and
apply (Z)? gates from 0~100 times to analyze their behaviors. Each point on the Bloch
Sphere represent the density matrix at each number of applied (Z)? gates. Experiments

were performed on ibmq_paris.
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4.2 Noise decomposition and simulation of (X)? gates

Here we use simple mathematical models to describe the dynamics of (X)? gates.
The quantum process could be seen as a combination of systematic, coherent rotation and
depolarization error. In the following experiments, we thus use equation (2.5.2) to fit the
dynamics obtained in Figure 4.3 and get the error rate of depolarizing error and the noise
Hamiltonian of each step. We took both coherent rotation and depolarization (Table 2)
into account in our model. In Figure 4.5, we plot both the Bloch sphere dynamics for the
(X)? gates (green dots), and the fitted dynamics (red dots). The variable noise
information suggests the state-dependent nature of the quantum gate noise and could be
investigated in the future. We note that the fitting is suitable for the early steps but gets
worse for long time steps; the fitting method could be improved using the CN method;
however, the analyzed noise Hamiltonians are almost equal. Here we only show the result
of the Forward Euler method. After collecting the Hamiltonian, we calculate the deviation
and the mean of the distribution to fit the Hamiltonian distribution. In Figure 4.6, we can
see that the noise distribution looks like the Lorentz distribution. After fully reproducing
the open system dynamics, there are many things for us to analyze. In the current stage,
we find that, unlike the assumption in section 2.6, the non-Gaussian distribution has

appeared, which will have significant implications for the noise mitigation method and
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the error corrections method.

Figure 4.5 Fitting of the Bloch sphere dynamics for the (X)? gates. The Bloch sphere
dynamics for (X)? gates (green) in Figure 5 are fitted with qubit dynamics with noise

Hamiltonian and depolarizing channel.
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Figure 4.6 The distribution of noise Hamiltonian in four different initial states. By
applying the analysis method mentioned in Appendix A, we can get the Hamiltonian of
each step. We can see that only when the initial state is |+), the H, noise distribution

has more Gaussianity, while the H, noise distributions in other initial states show highly
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non-Gaussianity.

4.3 Correlation error in a two-qubit system

We designed two circuits to check whether there is a correlation between two
independent systems (not entangled qubits) (Figure 4.7). In an experiment (a), only qubit
qo has been applied the (X)? gates. And in experiment (b), both qubit q, and qubit q;
has been applied the (X)? gates. Even the gate is imperfect, the Bloch sphere dynamics
of (a) and (b) should be the same since the two systems are not entangled. However, in
Figure 4.8, the trajectories on the Bloch sphere have different behavior. We have observed

the correlated noises when applying X gates on the neighbor qubit.

Yo : XHXHA—
qi :

c: =~ ;
(b)QOI—X X A
G- — XM/ X

C: 75

0

Figure 4.7 The designed circuits for observing the correlation between two qubits. The
initial states preparations and the increasing number of (X)? gates have not shown in
this figure. We initialize the qubit in four basis state and apply (X)? gates from 0~150
times to analyze their behaviors. We should notice that two qubits are not entangled in (a)
and (b).
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Figure 4.8 The designed circuits for observing the correlation between two qubits. The
qubit q; in red trajectory has not been applied the (X)? gates while in blue trajectory
q, has been applied the (X)2. Even two qubits are not entangled, and the measurement
is only applied to the qubit q, the gates applied on qubit q; show effect on qubit q, .

Experiments were performed on ibmq_paris.

4.4 Compensating pulse sequence design —(XZXZZ)? gates

As mentioned earlier, we found that there is no error in (Z)? gates on the Bloch
sphere (Figure 4.4). Therefore, we employ the method of dynamical decoupling. To
eliminate the rotation error, we choose a spin-echo type sequence (XZ)?2. Figure 4.9 is a
projection of the Bloch sphere. First, we hit an X, it will over-rotate, then we apply a
phase gate to flip, and another X will compensate for the over-rotation angle. Finally, we
apply a phase gate again to form an identity. To pursue higher stability, we choose the
second-order term (XZXZZ)?. In Figure 4.10, we can see that the designed gate
sequences successfully eliminate the rotation error and leave only depolarizing error.

We can view (XZXZZ)? gates as the decoherence-inducing gates, the number of
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gates is controllable, which means we can determine the amount of introduced noises.
This specific gate sequence can be used to introduce the specific noises when simulating

the open quantum system.'®

|0) |0) |0) |0)

1) 1) 1) 1)
Figure 4.9 Illustration of the compensating pulse sequences design. The circle is a
projection of the Bloch sphere on the YZ plane. To dynamically correct the over-rotation
error, first, a X gate is applied. The over-rotation is then turned into an under-rotation by

applying a phase (Z) gate. The over-rotation of the second applying X gates then cancels

the under-rotation. Finally, another Z gate is applied to recover identity.
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Figure 4.10 Bloch sphere Dynamics for the (XZXZZ)? gates. We initialize the qubit in
four initial states and apply (XZXZZ)? gates from 0~100 times to analyze their behaviors.
Each point on the Bloch Sphere represent the density matrix at each number of applied

(XZXZZ)?gates. Experiments were performed on ibmq_manhattan.
g p P q_
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5 Conclusion

Quantum Error Correction is the most important step for the ultimate universal fault-
tolerant quantum computer, but they rely on a certain assumption of the noise. A better
comprehension of the noises would benefit analyzing the performance of the quantum
computer. We provide a procedure to analyze noise composition for each possible
quantum dynamic. We utilize the known noise channel and the quantum master equation
to decompose the noise and obtain the error rates and noise Hamiltonian in each
experiment step. After obtaining the information about noises in the experiment, we can
reproduce the Bloch sphere dynamic. That is, we can extract the information of noise in
the experiment. We can study how noises from the environment affect the system and
how noises change over time.

With the procedure, we extract important characters of the gate noises of X gate.
We can get a deeper understanding of noise by analyzing the dynamics of Hamiltonian
and error rate. We reveal that the imperfection of (X)? consists of over-rotation errors
from gate error and decoherent errors from the environment. However, the conventional
benchmark protocol only yields the average gate fidelity for the calibration of gate
performance, which would provide limited information to describe the composition of the

gate noises properly. What’s more, we find that the non-Gaussian distribution and
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correlated noises have appeared, which have significant implications for the noise

mitigation method and the error corrections method. This algorithm help us better

understand noise and its behavior of noise. Besides, the result excites the concept of

utilizing the noise. We design hardware-specific gate sequences to mitigate or transform

a certain type of quantum noise. With designed gate sequences, we can generate a certain

type of noise for better performance for quantum simulation, error mitigation, and

quantum error correction. For example, if we design the gates that cause markovian noises,

they can be applied to simulate the noises in the open quantum systems.
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7 Appendix
Appendix A. Mathematical details in the Forward Euler method
To describe an open quantum system, we can use the quantum master equation:
PO @01 +p Y (L ~ 3 LLe®)), (@A)
i

where H is noise Hamiltonian, which causes the X gate to be over-rotating, p is the error
rate and L; corresponds to error operators. With density matrixes obtained from the
experiment, we need to solve the equation to thoroughly understand this quantum
dynamics system by finding the noise Hamiltonian and error rate of the quantum
dynamics.

Assuming that the point we measure is dense enough, we discretize the equation and

write the equation (To simplify the equation, we wused R[p] to represent

p % (Lip(OL] = S{LiLip(®)}))

p(tni1) — p(tn) _
At -

—i[H(tn), p(tx)] + Rp(tn)], (A.2)

where n is the n®" measurement density matrix that corresponds to the number of
(X)? gates. And the fitting density matrix of the next step is:
Prit(tn1) = p(tn) — At([H (tn), p(E1)] + R[p (&) (A.3)

To solve the equation, we first present H(t,) and p(t,) as:

1+ Tx (tn)JX + ry (tn)O-Y + T, (tn)GZ

5 (A4)

p(tn) =
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where oy y  is Pauli matrix.

H(t,) = Hy(ty)ox + Hy(tn)oy + Hz(t,)0z. (A.5)
The desired value of equation (A.3) is p and H(t,). or H,(t,) H,(t,) and H,(t).
Because we only consider the one qubit system, we first set the error rate p = 0 and

assume that

p(tni1) —p(tn) by b, — bsi
At = (bz +byi by ) (A.6)
while
B (b by— b3i>
D p@) = (2 ) (A7)

We can use equations (A.4) and (A.5) to extend —i[H(t,),p(t,)] and get

_i[H(tn)v p(tn)] = _i{H(tn)p(tn) - p(tn)H(tn)}

| (A.8)
_ (ery - Hyrx) (Hyrz - Hzry) - l(Hzrx - erz)
— \(Hyr, — Hyry) + i(Hyry — Hyry) (Hyry — Hy1y) ’
In contrast to the element in equations (A.7) and (A.8), we know that
n —1r 0
0 , —n|=A4 (A.9)
Iz 0 Tx
Hy o T 0 H, by
HZ —TZ O Tx HZ b3
We can get the Hamiltonian H by using A~
H, by
Hy | =A7"- (bz>, (A.11)
HZ b3

where A™! is Pseudo Inverse Matrix. (A generalization of the inverse matrix when
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the matrix is singular) Because we know the density matrix of each step, so after we get
the Hamiltonian H(t,), we can find out the most appropriate error rate p by minimizing

the trace distance between p(t,41) and pgi(ty41) in equation (A.2).

T(p, prit) = |1p(tns1) — pric(Ens )1 /2 (A.11)

Appendix B. Application details in the Crank-Nicolson method
Fora (X)? Bloch sphere dynamics (Figure B.1), we draw the vector length change
in each step (Figure B.2). We can use a linear equation to fit the dynamics of vector length,
which means that we can use only the initial value of the vector length to know the overall
depolarizing effect. The linear equation can be written as
y(t,) = ax(t,) + b, (B.1)
Where a corresponds to the depolarizing effect and b corresponds to the initial

measurement error.

10) |0)
X [ A % X \ 4 y
11} 1)
|0) |0)
- :
x 7 x - v
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Figure B.1 Bloch sphere Dynamics for the (X)? gates. We initialize the qubit in four
initial states and apply (X)? gates from 0~300 times to analyze their behaviors.

Experiments were performed on ibmq_paris.
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Figure B.2 Change of vector length at each step. We draw the change of vector length in

Oth

Figure B.1 and finds that the correlation is linear (0*" order).

With these properties, we can first normalize the Bloch vector from the
experiment, search the best Hamiltonian with minimum trace distance mentioned in
equation (A.11), and use the theory vector length value from the linear curve to rescale
the vector length. We must use the Crank-Nicolson method to unitary propagate the
system as the equation:

+1) — Pln 1 .
= zt p(t)=§(“[H(tn>'9<tn>]—l[H(tn),panH)]), (B.2)

By this method, we can share that the Hamiltonian information only represents the

rotation noises from imperfect gates. In the Forward Euler method, Hamiltonian

information might include the depolarizing noises that make the vector short. We draw
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the trace distance at each step in different initial states to compare the two methods. We

can find that the Crank-Nicolson method (black lines) has a smaller trace distance than

the Forward Euler method (colored lines). In other words, the Crank-Nicolson method

performs better in simulating the Bloch sphere dynamics.
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Figure B.2 Trace distance of different methods in different initial states. The black lines
represent the results from the Crank-Nicolson method, while the colored lines represent

the results from the Forward Euler method.

Appendix C. Variance of the depolarizing rate of (XZXZZ)? and (X)?

To discuss the variation of the decoherence noises in Bloch sphere dynamics under
(XZXZZ)? and (X)? gates, and fit the dynamics with our model. Three consecutive
experiments were done and fit independently to support statistical analysis. We then
extract the depolarization rate to assess their difference across devices and days (), which
could provide information about the amount of random noises introduced by the gate
sequences. For the (XZXZZ)? case, the depolarization rate shows a systematic trend

across devices (Fastest: Manhattan, Slowest: Bogota). In the case of manhattan, the
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depolarization rate exhibited large fluctuations and was not significantly different across
days. In the case of paris and bogota, the deviation of noises was much smaller, suggesting
the stability of the noises under (XZXZZ)? were better than manhattan. Except on 12/27,
the depolarization rates on three devices were all quantitively different from others. As
for the case of (X)? gates, the depolarization rates were all lower than that of (XZXZZ)?

due to a smaller number of pulses per identity, the stabilities were also better in general.
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mm bogota Em bogota

b ol

12/25 12/26 12/27 12/25 12/26 12/27

0.008

o
o
o
=

0.004 4

Depolarizing Rate

0.002 q

0.000 -

Figure C.1 Depolarization rates of (XZXZZ)? and (X)? on different devices and time.
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