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 摘要 

目前的量子電腦被稱為雜訊中等規模量子電腦（NISQ 電腦），發展受到雜訊

影響而受限，只能進行小規模計算且無法達成預期的應用。為了實現量子電腦的實

際應用，了解雜訊至關重要，分析雜訊有助於保護量子資訊受到影響和 NISQ 電

腦的開發。目前測量錯誤率的主要方法是隨機基準測試（RB）。 RB方法將來自不

同量子邏輯閘的雜訊視為相同的雜訊，然而若不同的量子邏輯閘具有不同類型的

雜訊，這種測量錯誤率方法就會有很多的討論空間。 

在這項研究中，藉由定量和定性的去分析 IBM-Q 系統中的雜訊，我們開發了

一種能識別量子邏輯閘與環境中雜訊的方法。我們藉由恆等閘引入雜訊，將實驗結

果畫在布洛赫球體上，並且藉由量子主方程去擬合球體上軌跡的動力學，來得到實

驗中雜訊動態的變化，也就是說，我們可以提取實驗過程中的雜訊，利用初始值便

可重現原本的軌跡，並且針對其性質進行分析。了解量子電腦上詳細的雜訊性質有

助於模擬開放量子系統動力學中的量子雜訊。利用特殊序列的量子邏輯閘引進特

定形式的雜訊，我們模擬了在開放式量子系統下簡單的能量轉移模型。詳細了解 

IBM-Q 量子電腦上單一量子位元系統的雜訊，對於未來應用在量子電腦上的錯誤

修正演算法或錯誤緩解演算法至關重要，將有助於現階段量子電腦的發展。 
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Abstract 

Quantum simulations of chemical systems remain the most promising target 

applications of near-term quantum computers. Yet, the small size and significant noise 

levels of quantum computers nowadays critically hamper the practicality of the 

applications. Current quantum devices are termed noisy intermediate-scale quantum 

devices (NISQ devices), which can only do small-scale calculations. Analysis of noises 

can be beneficial for protecting quantum information from errors and the development of 

NISQ devices. It is critical to understand noises in order to achieve the real-world 

application of quantum computers. The primary method of error rate measurement 

nowadays is randomized benchmarking (RB). The RB method views all noises from 

different gates as the same; however, various quantum gates have different types of noises, 

which is worth discussing. 

In this research, we develop a method to quantitatively identify the noises of 

quantum gates and systematically analyze noises in the IBM-Q systems. By fitting the 

Bloch sphere dynamics with the quantum master equation, we can obtain information 

about noises in the experiment. In other words, we can extract the noise information in 

the experiment. The detailed noises characterization on quantum computers can be 

beneficial for simulating the quantum noises in open quantum system dynamics, which 
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can be a significant application of NISQ devices. Understanding the detailed mechanism 

of the underlying noises about IBM-Q quantum computers is vital for error mitigation 

protocols for the future of the quantum computer. 
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1 Background 

1.1 Noise-prone quantum computer 

Quantum computers harness the intrinsic properties of quantum mechanics, which 

offer the promise of efficiently solving specific problems that are intractable for classical 

computers.1-3 Quantum computers are believed to solve some computational issues that 

are hard for classical computers, such as integer factorization2 (which underlies RSA 

encryption4), cryptography, search problems, machine learning5, and simulation of 

quantum chemical systems6. Quantum computers rely on qubits to store information. 

However, qubits are fragile that their stored quantum information can be scrambled easily. 

In addition, the preparation and the measurement of the quantum state could cause noise. 

Noises make quantum computers error-prone, and they are the central obstacles to 

building large-scale quantum computers and make computing results unreliable. Under 

current restrictions, simulation of chemical systems is a focus of NISQ devices.7 (Figure 

1.1)  
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Figure 1.1 The gap between quantum algorithms and machines. Quantum simulation of 

chemical systems is the most promising target application of near-term quantum 

computers. The figure is taken from https://arxiv.org/abs/1903.10541 

 

1.2 Randomized benchmarking method 

The road to developing and operating devices that would enable quantum 

computation has been and continues to be full of obstacles. One of the main challenges 

in building a quantum information processor is the non-scalability of completely 

characterizing the noise affecting a quantum system. When we got the information in the 

system through measurement, the noise from state preparation and measurement (SPAM 

errors) that affected qubits would be toke into account. To easily determine the current 

system's performance, randomized benchmarking (RB), a scalable and robust algorithm 

for benchmarking the full set of Clifford gates by a single parameter using randomization 

techniques, is applied to characterize the noise.8 

To benchmark the noise of gates, the RB sequences are randomly chosen in Clifford 

https://arxiv.org/abs/1903.10541
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elements and the reversal element, which can make the overall transformation be the 

identity. (Figure 1.2) After executing the RB sequences, we measure the system and get 

the averaged sequence fidelity for calculating the average error-rate related to the RB 

sequences' average performance. The RB method is widely used in many companies, such 

as IBM and Google, for its scalability and robustness.  

 

 

Figure 1.2 Example of the RB sequences. The characters in the blocks present different 

quantum gates. We need to notice that twice the Pauli gates (Pauli X, Pauli Y, and Pauli 

Z) equals the identity gate, which means that the qubit would be the initial state after 

applying these RB sequences. 

 

1.3 Domestic development of quantum computer 

 Taiwan proposed the concept of establishing a national quantum team by inter-

ministerial associations. By 2026, 8 billion dollars will be invested to promote the 

country's technology and talent in this field, and it is finally officially launched. To 

develop our quantum computer, scientists contributed many efforts. Taiwan recently 

focused on building qubits, which is the base of the quantum computer. The qubit amount 

that has been made is about 1-2. There are many types of quantum computers, including 



 

4 

 

superconducting quantum computers, ion-trapped quantum computers, and 

semiconducting quantum computers. No matter which types the quantum computer is, 

how to characterize the quantum system and how to calibrate the quantum system is a 

matter of concern. An algorithm that focuses on characterizing a basic one-qubit system 

will be helpful in this current stage. 

 

1.4 Motivation 

In the RB method, we consider the average performance of the RB sequences to 

identify the error rate of gates; however, we consider that different gates may have 

different kinds of noises. If we average their performance, we may underestimate the error 

rate, which can be troublesome when we use some quantum algorithms that majorly use 

specific gates. In a nutshell, quantum computers are developing technologies while the 

main obstacles are noises. The primary method of noise characterization is too simplified 

to analyze the noise. To have a more profound understanding of the behavior of each 

quantum gate, we want to establish a method to characterize the basic noise on the 

quantum computer, including an analysis of the noise of quantum gates and the 

environment.  

This research aims to develop a method to analyze noise composition for each 



 

5 

 

possible quantum gate, decompose the noise into specific simple noise channels, and 

design gate sequences to mitigate or transform certain types of quantum noise. 

Furthermore, we intend to fully characterize the noises of one qubit system on the IBM-

Q quantum computer in Table 1. The algorithm emphasizes the characterization of 

quantum errors based on a dynamical map approach which can be easily imagined over a 

quantum dynamic. We expect our study can obtain a better understanding of quantum 

noises. It can be beneficial for noise characterization and quantum error correction. 

What is more, it can assist the development of quantum computers, including the 

simulation of chemical systems. Analysis of noises can be beneficial for protecting 

quantum information from errors and the development of NISQ devices. It is critical to 

understand noises in order to achieve the real-world application of quantum computers.  

Machine Name Qubits Quantum Volume 

Paris 27 32 

Bogota 5 32 

Manhattan 65 32 

Table 1. IBM-Q machine examined in this research. 
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2 Introduction to Quantum Computing 

The following section will discuss the basic concept and math, including quantum 

bits, density matrix, and Bloch Sphere. Besides, we will also present some theoretical 

background, including the open quantum system, markovian process, and Gaussian 

distribution. 

2.1 Quantum bits (Qubit) 

In classic computers, a bit can be in the state 0 or 1. By contrast, a qubit can exist in 

a quantum computer in a continuum of states between |0⟩ and |1⟩. Until we observe the 

qubit, it will be in its superposition state: 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, (2.1.1) 

where 𝛼 and 𝛽 are complex numbers, called probability amplitude. 

When we measure a qubit, we obtain either the result 0, with a probability |α|2, or 

the result 1, with probability |β|2  . Naturally, |α|2 + |β|2 = 1 , since the probabilities 

must sum to one. While the general state of one qubit is 

 |𝜓⟩ = 𝑐𝑜𝑠
𝜃

2
|0⟩ + 𝑒𝑖𝜑 𝑠𝑖𝑛

𝜃

2
|1⟩,  (2.1.2) 

where θ and φ are real numbers, θ ranges from 0 to π, and φ ranges from 0 to 2π. We 

can also write the quantum state in a vector notation as 
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|𝜓⟩ = (
𝑐𝑜𝑠

𝜃

2

𝑒𝑖𝜑 𝑠𝑖𝑛
𝜃

2

). (2.1.3) 

The numbers θ and φ define a point on the unit three-dimensional unit-sphere, the 

Bloch sphere, which provides a useful way of visualizing a single qubit's state. (Figure 

2.1) Here we denote the four specific quantum states that are on the point of the X-axis, 

Y-axis, and Z-axis: 

|0⟩ = (
1
0

) , |1⟩ = (
0
1

) , |+⟩ =
1

√2
(

1
1

) , |−⟩ =
1

√2
(

1
𝑖

), (2.1.4) 

 

Figure 2.1 Bloch sphere representation of a qubit state. The four points stand for four 

specific quantum states mentioned in equation (2.1.4). 

 

2.2 Density matrix 

The state vectors in equation (2.1.3) define the pure quantum states. When the quantum 

state is mixed, we can adopt a density matrix9 or density operator to describe the quantum 

system and its evolution. The evolution of a closed quantum system can be described by 

the unitary operator U. If the system was initially in the state |𝜓𝑖⟩ with probability 𝑝𝑖 
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then after the evolution has occurred, the system will be in the state 𝑈|𝜓𝑖⟩  with 

probability 𝑝𝑖. With the definition of the density matrix, the evolution of the system can 

be described by 

𝜌 ≡ ∑ 𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖|

𝑖

𝑈
→ ∑ 𝑝𝑖𝑈|𝜓𝑖⟩⟨𝜓𝑖|𝑈

†

𝑖

= 𝑈𝜌𝑈†. (2.2.1) 

For one qubit system, the density matrix would be a 4 × 4 matrix, and its basis can be 

Pauli matrices σ𝑖 (i = X, Y, Z, I), which are Hermitian and unitary. 

𝑋 = 𝜎𝑥 = (
0 1
1 0

) , 𝑋† = 𝑋,  

𝑌 = 𝜎𝑦 = (
0 −𝑖
𝑖 0

) , 𝑌† = 𝑌, 

𝑍 = 𝜎𝑧 =  (
1 0
0 −1

) , 𝑍† = 𝑍, 

𝐼 = 𝜎𝐼 = (
1 0
0 1

) , 𝐼† = 𝐼, 

(2.2.2) 

where different matrices can represent different gates. (Identity gate means doing 

nothing) For one qubit system, the pure density matrix can be expanded by its bases, the 

Pauli matrices:  

ρ =
𝐼 + 𝑟𝑥𝑋 + 𝑟𝑦𝑌 + 𝑟𝑧𝑍

2
. (2.2.3) 

The density matrix can be drawn on the Bloch sphere with the vector 𝑣⃑ = (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) 

where 𝑟𝑖 corresponds to the projection length of the Bloch vector on the i-axis. We can 

know the density matrices of mentioned quantum states in equation (2.2.4) by equation 

(2.2.5): 
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|0⟩⟨0| = (
1 0
0 0

) =
1

2
(𝐼 + 𝑍), 𝑣⃑ = (0,0,1) 

|1⟩⟨1| = (
0 0
0 1

) =
1

2
(𝐼 − 𝑍), 𝑣⃑ = (0,0, −1) 

|+⟩⟨+| =
1

√2
(

1 1
1 1

) =
1

√2
(𝐼 + 𝑋), 𝑣⃑ = (1,0,0) 

|−⟩⟨−| =
1

√2
(

1 −𝑖
𝑖 1

) =
1

√2
(𝐼 + 𝑌), 𝑣⃑ = (0,1,0). 

(2.2.4) 

We can notice that the Pauli matrix shown in four specific states is related to what 

axis the state is on. 

 

2.3 Quantum gate and measurement 

When applying the operation on the qubit, we can write the operation into the 

mathematical form and visualize the operation by the Bloch sphere. With the density 

matrix of the initial state and the different operators with equation (2.2.2), we can map 

the density matrix to the Bloch sphere to see how the operators behave. Application of 

different gates means rotating the vector (quantum state) 180 degrees around the different 

axis on the Bloch sphere. (Figure 2.2) Applying the same Pauli gate twice to the same 

qubit can cancel out the operation, which brings us to the following identity: 

X2 = 𝑌2 = 𝑍2 = 𝐼. (2.2.5) 
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Figure 2.2 Different gates shown on the Bloch sphere. 

 

Quantum operations or quantum gates are performed by sending electromagnetic 

impulses at microwave frequencies to the resonator coupled to the qubit. (Figure 2.3) 

This frequency resonates with the energy separation between the energy levels for |0⟩ and 

|1⟩. As for the measurement, it sends a microwave tone to the resonator and analyzes the 

signal it reflects back. The amplitude and phase of the reflected signal depend on the qubit 

state. By default, all qubits are initialized in the |0⟩ state in the z-basis. Therefore, qubit 

measurement is generally in a z-basis.10 

 

Figure 2.3 IBMQ 5 qubits superconducting quantum computer. Figure is taken from 

https://jonathan-hui.medium.com/qc-how-to-build-a-quantum-computer-with-superconducting- 

circuit-4c30b1b296cd 

 



 

11 

 

With the interference of the noises, the operator (gate) could have the error that can 

display on the Bloch sphere dynamic. For instance, after the ground state |0⟩ is applied 

the (X)2 gates, the point on the Bloch sphere should stay on the intersection at the sphere 

surface and the positive z-axis if the X gate is perfect. The noises make the points a 

trajectory on the Bloch sphere. The different noises make the different tendencies of the 

behavior of the trajectory. The noise characterization method is major based on Bloch 

sphere dynamics in this research. 

 

2.4 Open quantum system 

 We can view a quantum computer as a device that can simulate a quantum system. 

When the quantum computer is still suffering the noises from the environment, we have 

to consider the problem as an open quantum system. The open quantum system11 means 

that the system we care for interacts with an external quantum system (bath or 

environment). If the quantum system is in a closed quantum system, it will retain its 

coherence. Still, the interaction between the quantum system and the external quantum 

system will happen when we try to control or measure the system. When the system 

interacts with the environment, the information might flow or be lost from the system to 

the environment, called decoherence. Decoherence errors from the environment affect the 
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qubit state and make the qubit fragile. The schematic picture has shown in Figure 2.4, 

where the red pulse represents the operations. 

 

 

Figure 2.4 Schematic picture of an open quantum system. 

 

2.5 Quantum master equations and markovian assumption 

To describe the open quantum system dynamics, we can use the quantum master 

equation10, where the master equation is a differential equation that corresponds to the 

time evolution. This research views the trajectory result of measurement in a noisy 

environment as a stochastic process. If we assume that the process is markovian11, instead 

of the past state and the present state, we only need the present state to know the future 

states of the trajectory. In other words, we assume that the correlation time δtB that the 

bath needs to lose the information flow from the system forever is very short, and we can 

ignore the memory effect of the bath. If we denote δtS as the time takes for the dynamics 

we want to observe; the relationship would be: 
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δtS ≫ δtB. (2.5.1) 

  In this assumption, we use the stochastic Liouville equation12-13 to describe the 

system: 

𝑑𝜌(𝑡)

𝑑𝑡
= −

𝑖

ℏ
[𝐻(𝑡), 𝜌(𝑡)] + 𝑝 ∑ (𝐿𝑖𝜌(𝑡)𝐿𝑖

†
−

1

2
{𝐿𝑖

†
𝐿𝑖𝜌(𝑡)}) ,

𝑖

 (2.5.2) 

where H is noise Hamiltonian, which is caused by the imperfect gates, p is the error rate 

and 𝐿𝑖 corresponds to noise operator. The first term of the right-hand side of equation 

(2.5.2) can be interpreted as the unitary evolution (the length of the Bloch vector keeps 

the same) because of the gate error. And the second term can be interpreted as system-

bath coupling. We can choose the proper noise channel to describe the trajectory, and the 

quantum operations of the noise channel determine the noise operators9. 

Nowadays, several known operation elements exist for important single qubit 

quantum operations, such as depolarizing channel, amplitude damping, and phase 

damping. In Table 2, we show the detailed operation elements, where 𝑝 and γ are the 

error rates. 

depolarizing channel 

𝐸1 = √1 −
3𝑝

4
[
1 0
0 1

] , 𝐸2 = √
𝑝

4
[
0 1
1 0

], 

𝐸3 = √
𝑝

4
[

0 𝑖
−𝑖 0

] , 𝐸4 = √
𝑝

4
[
1 0
0 −1

] 

amplitude damping 𝐸1 = [
1 1

0 √1 − 𝛾
] , 𝐸2 = [0 √𝛾

0 0
] 

phase damping 𝐸1 = [
1 1

0 √1 − 𝛾
] , 𝐸2 [

0 0

0 √𝛾
] 
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Table 2. Operation elements for important single qubit quantum operations. 

 

2.6 Noise distribution 

When processing the noise problem, we often assume that the distribution of the 

noises is Gaussian distribution (normal distribution). According to the Central Limit 

Theorem (CLT)14, the distribution of a set of random variables would be a Gaussian 

distribution. The approximation in this theorem is that the sample size is sufficiently large 

and random enough. If the distribution is non-Gaussian, we can figure out how non-

Gaussian it is and the possible reasons, such as extreme values, insufficient data size, or 

natural limit of hardware. It is important to characterize the noise with these statistical 

properties. 

 

Figure 2.5 Gaussian distribution function. The probability of finding the value is related 

to which interval of the standard deviation of the mean the value is within. Figure is taken 

from https://jonathan-hui.medium.com/qc-how-to-build-a-quantum-computer-with-

superconducting- circuit-4c30b1b296cd 
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3 Methodology 

In this study, we aim to observe gate errors by using the identity gate (composed of 

multiple Pauli gates) and focus on the one qubit system first for basic noise 

characterization 

 

3.1 Characterization of noise-introducing identity gate 

As shown in the equation (2.2.5) and Figure 2.2, applying the same Pauli gate twice 

to the same qubit should be the same as applying an identity gate. Because the qubit 

measurement is generally in z-basis and the Y gate can be decomposed to X gate and 

virtual Z gate:  

Y = i XZ. (3.1.1) 

We choose the X gate as our primary object of observation and take the four specific 

states mentioned in equation (2.2.4) as the initial states. We can obtain the population by 

dividing the number of 0 or 1 when the initial state is |0⟩ or |1⟩ by measurement times.  

We run the circuit on an IBM-Q quantum computer to see the performance of the 

(X)2 gates. (Figure 3.1) 
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Figure 3.1 Schematic picture of the circuit. The number of (X)2 gates are increased to 

see the dynamics of the noises. The state preparation operations have not been shown in 

this figure. 

 

To prepare the different initial states, we need to apply different gates. All qubits are 

initialized in the |0⟩ state: 

|1⟩ = 𝑋|0⟩ = (
0 1
1 0

) (
1
0

) = (
0
1

), (3.1.2) 

|+⟩ = 𝐻|0⟩ =
1

√2
(

1 1
1 −1

) (
1
0

) =
1

√2
(

1
1

), (3.1.3) 

|−⟩ = 𝑆𝐻|0⟩ =
1

√2
(

1 0
0 𝑖

) (
1
0

) =
1

√2
(

1
𝑖

). (3.1.4) 

 

3.2 Quantum state tomography 

Apart from the population, we obtain the density matrix by quantum state 

tomography and see the Bloch sphere dynamics. Quantum state tomography9 is a method 

for determining the quantum state of a system. Since the quantum state can't be directly 
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determined by measurement, we need to perform repeated preparations of the same 

quantum state, which is then measured in different ways in order to build up a complete 

description of the quantum state. From equation (2.2.5), we know the definition of the 

density matrix, which can completely express the quantum state. Suppose we have many 

copies of a single qubit density matrix, ρ. The set 
𝐼

√2
 , 

𝑋

√2
 , 

𝑌

√2
 , 

𝑍

√2
 forms an orthonormal 

set of matrices concerning the Hilbert–Schmidt inner product, so ρ may be expanded as 

𝜌 =
𝑡𝑟(𝜌 )𝐼 + 𝑡𝑟(𝜌𝑋)𝑋 + 𝑡𝑟(𝜌𝑌)𝑌 + 𝑡𝑟(𝜌𝑍)𝑍

2
, (3.2.1) 

where 𝑡𝑟(ρ𝐴) equals the average value of observables. The measurement result would 

be 0 or 1. We can calculate the observables by the number of measurements (in Z basis): 

𝑡𝑟(𝜌𝑍)  =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 0) ∗ 1 +  (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1) ∗ −1

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
. (3.2.2) 

We map the density matrix to the Bloch sphere to obtain further observation. The average 

value of observables can form a state vector on the Bloch sphere: 

𝑣⃑  = (𝑡𝑟(𝜌𝑋), 𝑡𝑟(𝜌𝑌), 𝑡𝑟(𝜌𝑍)) = (𝑟𝑥, 𝑟𝑦, 𝑟𝑧). (3.2.3) 

And the length of the state vector is proportional to the purity: 

γ ≡ tr(ρ2). (3.2.4) 

With state tomography, we can obtain the density matrix and the Bloch sphere and 

construct the Bloch sphere dynamics by gaining the density matrix each time after the 

increasing number of (𝑋)2 gates. On the other hand, with the known density matrix of 
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initial states mentioned in equation (2.2.8), the density matrix after applying the operator 

can be expressed as 

ℰ(𝜌) = ∑ 𝐸𝑘𝜌𝐸𝑘
†

𝑘

, (3.2.5) 

where 𝐸𝑘  are operation elements, satisfying 𝐸𝑘
†𝐸𝑘  =  𝐼  if the quantum operation is 

trace-preserving. 

 

3.3 Noise information extraction by numerical analysis method 

This research aims to extract the noise information in the Bloch sphere dynamics by 

numerically analyzing the open system dynamics. By measurement, we can know the 

density matrix of each step while the Hamiltonian and the error rate of the noise are 

unknown to us. We can use the quantum master equation mentioned in equation (2.5.2) 

to describe the open quantum dynamics. We can find the Hamiltonian by considering 

whether the evaluated density matrix of the state is close to the experimental result. In 

other words, the trace distance of the two matrices should be minimized. 

T (𝜌, 𝜌𝑡ℎ𝑒𝑜𝑟𝑦) =
||𝜌(𝑡𝑛+1)−𝜌𝑡ℎ𝑒𝑜𝑟𝑦(𝑡𝑛+1)||

2
 , (3.2.5) 

where 𝜌  is the density matrix obtained in the experiment and 𝜌𝑡ℎ𝑒𝑜𝑟𝑦  is the 

theoretically evaluated density matrix. If T ( 𝜌, 𝜌𝑡ℎ𝑒𝑜𝑟𝑦) = 0 , meaning that the 

Hamiltonian and the error rate have correctly described the open quantum system. 
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 We can use numerical methods to propagate the system with the optimized condition. 

The numerical methods we used in this research are the Forward Euler method and the 

Crank-Nicolson method. 

 

3.3 The Forward Euler method 

 The Forward Euler method15 is a simple method to process the differential equation 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), (3.3.1) 

which is the form of the quantum master equation we care about. By the Taylor expansion 

and truncating the equation at the second-order term, we can rewrite the equation as 

𝑦(𝑡𝑛+1) = 𝑦(𝑡𝑛) + (𝑡𝑛+1 − 𝑡𝑛)𝑦′(𝑡𝑛). (3.3.2) 

By defining ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛, we can get the equation  

y(𝑡 + ∆𝑡) − y(𝑡)

∆𝑡
= 𝑓(𝑡, 𝑦(𝑡)), (3.3.3) 

where y(t) corresponds to the density matrix we get in the experiment, and 𝑓(𝑡, 𝑦(𝑡)) 

includes the information of noise Hamiltonian and the error rate.  

 To check whether the operator in 𝑓(𝑡, 𝑦(𝑡)) is unitary, we apply the equation to the 

Time-Dependent Schrödinger Equation (we set ℏ = 1): 

𝛹(𝑡 + ∆𝑡) − 𝛹(𝑡)

∆𝑡
= −𝑖𝐻𝛹(𝑡). (3.3.4) 

By reorganizing the equation, the propagator in this equation is 
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𝑈(0, ∆𝑡) = 1 − 𝑖𝐻∆𝑡. (3.3.5) 

And we know that  

𝑈𝑈† = (1 − 𝑖𝐻∆𝑡)(1 + 𝑖𝐻∆𝑡) ≠ 𝐼. (3.3.6) 

 Therefore, we know that the Forward Euler method is a first-order explicit numerical 

method and its propagation method is non-unitary.  

 There is another method called the Backward Euler method, which like the Forward 

Euler method, is a first-order implicit method. 

y(𝑡 + ∆𝑡) − y(𝑡)

∆𝑡
= 𝑓(𝑡 + ∆𝑡, 𝑦(𝑡 + ∆𝑡)), (3.3.7) 

The local truncation error of the Euler method is approximately proportional to (∆𝑡)2 

and the global error is approximately proportional to ∆𝑡. The large truncation error will 

be a significant problem in long-time propagation.  

 The mathematical detail of the Forward Euler method in this research has been 

attached in Appendix A. 

 

3.4 The Crank-Nicolson method 

We use the Crank-Nicolson method15 to avoid the large truncation error from the 

Forward Euler method. The Crank-Nicolson method considers the Forward Euler method 

and backward Euler method simultaneously. The equation is 
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y(𝑡 + ∆𝑡) − y(𝑡)

∆𝑡
=

1

2
(𝑓(𝑡, 𝑦(𝑡)) + 𝑓(𝑡 + ∆𝑡, 𝑦(𝑡 + ∆𝑡))), (3.4.1) 

which is both implicit and explicit. To check whether the propagation is unitary, similarly, 

we apply the equation to the Time-Dependent Schrödinger Equation and get  

Ψ(𝑡 + ∆𝑡) − Ψ(𝑡)

∆𝑡
= −

𝑖

2
(𝐻̂Ψ(𝑡) + 𝐻̂Ψ(𝑡 + ∆𝑡)). (3.4.2) 

By reorganizing the equation, the propagator in this equation is 

𝑈(0, ∆𝑡) = (1 +
𝑖𝐻∆𝑡

2
)−1(1 −

𝑖𝐻∆𝑡

2
). (3.4.3) 

And we can know that 

𝑈𝑈† = 𝐼. (3.4.4) 

This method can process the problem by considering the noise Hamiltonian as the 

coherence part from the imperfect gate and the error rate as the decoherence part from the 

environment. 

The application details of the Crank-Nicolson method in this research has been 

attached in Appendix B. 

 

3.5 The Outline of this work 

To sum up, everything that has been stated so far: firstly, we start from the (X)2 

gates, the identity gate. We observe the change in the fidelity of the population when the 

number of (X)2 gates are increasing. Secondly, to further understand the effect of the 
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coherence and the decoherence noises, we perform quantum state tomography to obtain 

density matrices and observe the purity change during the process. Next, we draw the 

Bloch sphere dynamic to look into the major noises of the quantum gate. We utilize the 

known noise channel and the quantum master equation to decompose the noise and obtain 

the error rates and noise Hamiltonian in each experiment step. After fitting the 

experimental result, we can reproduce the Bloch sphere dynamic by the noise channel 

and the noise Hamiltonian with the initial condition. Finally, we can extract the 

information about noise in the experiment and analyze the noise dynamics during the 

experiment and the overall noise information. 
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4 Results and Discussion 

4.1 Characterization for Pauli gates in one qubit system 

As a first step to understanding the qubit dynamics induced by (X)2  gates, we 

initialized a single qubit in the ground state and applied (X)2 gates multiple times. After 

the (X)2  gates, projective measurement in a computational basis is performed to 

calculate the population remaining in the ground state. We plotted the ground state 

populations as a function of the number of (X)2  gates (Figure 4.1). The results are 

grouped according to (a) different times and (b) different physical qubits. In both cases, 

the ground state populations significantly decrease, and the dynamics behave as highly-

noisy oscillations. The population then finally reach equilibrium around 0.5 at >1000 

(X)2 gates. We speculated that two predominating types of error in the X gates could 

explain the dynamics. An over-rotation of the X gates results in the population inversion 

at the initial stages. Decoherent-type error dominates at many X gates, which drives the 

population towards equilibrium. We thus perform further state characterization to assess 

the dynamics of the noises induced by (X)2 gates. Furthermore, the population dynamics 

under different parameters behave very differently, even qualitatively, which also 

signifies the highly unstable nature of the gate noises. 
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Figure 4.1 Single qubit population dynamics for the (X)2  gates. Ground state 

populations as functions of the number of applied X2  gates are plotted. In (a), the 

experiments were performed on different days (8/9 and 8/10) but same physical qubit. In 

(b), the two experiments are performed on different physical qubits. All experiments were 

performed on ibmq_ourense. 

 

The purity changes of the four initial states are shown in Figure 4.2. When the initial 

state is |+⟩, the change of purity shows special stability. Hence, we turn to see the Bloch 

sphere dynamics to achieve further (Figure 4.3). Finding that the huge amount of (X)2 

gates caused the vector of the density matrix to move around the axis of X, and the length 

of the vector decreased with the increasing number of (X)2 gates. When the initial state 

is |+⟩, the vector on the Bloch sphere is right on the X-axis, the influence of rotation from 

(X)2 gates would be smaller. We find that (X)2 gates cause similar noise, which makes 

the vector on the Bloch sphere rotate and be shorter. Consequently, we analyze the 

composition of noise described by the depolarizing noise channel and Rx form. We 

replace (X)2 gates with RX and consider the depolarizing channel by using operator-
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sum representation. Besides, we also see the Bloch sphere dynamics of (Z)2  gates 

(Figure 4.4). We find that no matter how much (Z)2 gates we apply, the vector of the 

density matrix stays on its initial position, which means that the gate error of the Z gate 

is near zero. It is appreciable because the Z gate on IBM-Q quantum computers can be 

implemented virtually in hardware via frame changes. 

 

 

Figure 4.2 Single qubit purity changes for the (X)2 gate. In each subplot, the state purity 

as a function of the number of applied (X)2 gates are plotted. (a)–(d) corresponds to the 

initial state = |0⟩, |1⟩, |+⟩, | − ⟩, respectively. All experiments were performed on 

ibmq_bogota. 
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Figure 4.3 Bloch Sphere Dynamics for the (X)2 Gate Sequences. We initialize the qubit 

in different initial states, |0⟩, |1⟩, |+⟩, |−⟩, and apply(X)2  gates from 0~300 times to 

analyze the dynamics. A dot represents the Bloch vector for the single-qubit state, and the 

dot is traced continuously with an increasing number of (X)2 gates. (a)-(d) all show the 

effect of rotating around the X-axis and shortening towards the center. All experiments 

were performed on ibmq_bogota. 

 

 

Figure 4.4 Bloch sphere dynamics for the (𝑍)2 gate sequences. The initial states of (a), 

(b), (c), (d) are |0⟩, |1⟩, |+⟩, |-⟩, respectively. We initialize the qubit in four basis state and 

apply (Z)2 gates from 0~100 times to analyze their behaviors. Each point on the Bloch 

Sphere represent the density matrix at each number of applied (Z)2 gates. Experiments 

were performed on ibmq_paris. 
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4.2 Noise decomposition and simulation of (𝐗)𝟐 gates 

Here we use simple mathematical models to describe the dynamics of (X)2 gates. 

The quantum process could be seen as a combination of systematic, coherent rotation and 

depolarization error. In the following experiments, we thus use equation (2.5.2) to fit the 

dynamics obtained in Figure 4.3 and get the error rate of depolarizing error and the noise 

Hamiltonian of each step. We took both coherent rotation and depolarization (Table 2) 

into account in our model. In Figure 4.5, we plot both the Bloch sphere dynamics for the 

(X)2  gates (green dots), and the fitted dynamics (red dots). The variable noise 

information suggests the state-dependent nature of the quantum gate noise and could be 

investigated in the future. We note that the fitting is suitable for the early steps but gets 

worse for long time steps; the fitting method could be improved using the CN method; 

however, the analyzed noise Hamiltonians are almost equal. Here we only show the result 

of the Forward Euler method. After collecting the Hamiltonian, we calculate the deviation 

and the mean of the distribution to fit the Hamiltonian distribution. In Figure 4.6, we can 

see that the noise distribution looks like the Lorentz distribution. After fully reproducing 

the open system dynamics, there are many things for us to analyze. In the current stage, 

we find that, unlike the assumption in section 2.6, the non-Gaussian distribution has 

appeared, which will have significant implications for the noise mitigation method and 
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the error corrections method. 

 

 

Figure 4.5 Fitting of the Bloch sphere dynamics for the (X)2 gates. The Bloch sphere 

dynamics for (X)2 gates (green) in Figure 5 are fitted with qubit dynamics with noise 

Hamiltonian and depolarizing channel. 

 

 

Figure 4.6 The distribution of noise Hamiltonian in four different initial states. By 

applying the analysis method mentioned in Appendix A, we can get the Hamiltonian of 

each step. We can see that only when the initial state is |+⟩, the Hz noise distribution 

has more Gaussianity, while the Hz noise distributions in other initial states show highly 
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non-Gaussianity. 

 

4.3 Correlation error in a two-qubit system 

We designed two circuits to check whether there is a correlation between two 

independent systems (not entangled qubits) (Figure 4.7). In an experiment (a), only qubit 

q0 has been applied the (X)2 gates. And in experiment (b), both qubit q0 and qubit q1 

has been applied the (X)2 gates. Even the gate is imperfect, the Bloch sphere dynamics 

of (a) and (b) should be the same since the two systems are not entangled. However, in 

Figure 4.8, the trajectories on the Bloch sphere have different behavior. We have observed 

the correlated noises when applying X2 gates on the neighbor qubit.  

 

 

Figure 4.7 The designed circuits for observing the correlation between two qubits. The 

initial states preparations and the increasing number of (X)2 gates have not shown in 

this figure. We initialize the qubit in four basis state and apply (X)2 gates from 0~150 

times to analyze their behaviors. We should notice that two qubits are not entangled in (a) 

and (b). 
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Figure 4.8 The designed circuits for observing the correlation between two qubits. The 

qubit q1 in red trajectory has not been applied the (X)2 gates while in blue trajectory 

q1 has been applied the (X)2. Even two qubits are not entangled, and the measurement 

is only applied to the qubit q0, the gates applied on qubit q1 show effect on qubit q0 . 

Experiments were performed on ibmq_paris. 

 

4.4 Compensating pulse sequence design –(𝐗𝐙𝐗𝐙𝐙)𝟐 gates 

As mentioned earlier, we found that there is no error in (𝑍)2 gates on the Bloch 

sphere (Figure 4.4). Therefore, we employ the method of dynamical decoupling. To 

eliminate the rotation error, we choose a spin-echo type sequence (XZ)2. Figure 4.9 is a 

projection of the Bloch sphere. First, we hit an X, it will over-rotate, then we apply a 

phase gate to flip, and another X will compensate for the over-rotation angle. Finally, we 

apply a phase gate again to form an identity. To pursue higher stability, we choose the 

second-order term (XZXZZ)2 . In Figure 4.10, we can see that the designed gate 

sequences successfully eliminate the rotation error and leave only depolarizing error. 

We can view (XZXZZ)2  gates as the decoherence-inducing gates, the number of 
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gates is controllable, which means we can determine the amount of introduced noises. 

This specific gate sequence can be used to introduce the specific noises when simulating 

the open quantum system.16 

 

Figure 4.9 Illustration of the compensating pulse sequences design. The circle is a 

projection of the Bloch sphere on the YZ plane. To dynamically correct the over-rotation 

error, first, a X gate is applied. The over-rotation is then turned into an under-rotation by 

applying a phase (Z) gate. The over-rotation of the second applying X gates then cancels 

the under-rotation. Finally, another Z gate is applied to recover identity. 

 

 

Figure 4.10 Bloch sphere Dynamics for the (𝑋𝑍𝑋𝑍𝑍)2 gates. We initialize the qubit in 

four initial states and apply (XZXZZ)2 gates from 0~100 times to analyze their behaviors. 

Each point on the Bloch Sphere represent the density matrix at each number of applied 

(XZXZZ)2gates. Experiments were performed on ibmq_manhattan. 
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5 Conclusion 

Quantum Error Correction is the most important step for the ultimate universal fault-

tolerant quantum computer, but they rely on a certain assumption of the noise. A better 

comprehension of the noises would benefit analyzing the performance of the quantum 

computer. We provide a procedure to analyze noise composition for each possible 

quantum dynamic. We utilize the known noise channel and the quantum master equation 

to decompose the noise and obtain the error rates and noise Hamiltonian in each 

experiment step. After obtaining the information about noises in the experiment, we can 

reproduce the Bloch sphere dynamic. That is, we can extract the information of noise in 

the experiment. We can study how noises from the environment affect the system and 

how noises change over time.  

 With the procedure, we extract important characters of the gate noises of X gate. 

We can get a deeper understanding of noise by analyzing the dynamics of Hamiltonian 

and error rate. We reveal that the imperfection of (X)2 consists of over-rotation errors 

from gate error and decoherent errors from the environment. However, the conventional 

benchmark protocol only yields the average gate fidelity for the calibration of gate 

performance, which would provide limited information to describe the composition of the 

gate noises properly. What’s more, we find that the non-Gaussian distribution and 



 

33 

 

correlated noises have appeared, which have significant implications for the noise 

mitigation method and the error corrections method. This algorithm help us better 

understand noise and its behavior of noise. Besides, the result excites the concept of 

utilizing the noise. We design hardware-specific gate sequences to mitigate or transform 

a certain type of quantum noise. With designed gate sequences, we can generate a certain 

type of noise for better performance for quantum simulation, error mitigation, and 

quantum error correction. For example, if we design the gates that cause markovian noises, 

they can be applied to simulate the noises in the open quantum systems. 
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7 Appendix 

Appendix A. Mathematical details in the Forward Euler method 

To describe an open quantum system, we can use the quantum master equation: 

𝑑𝜌(𝑡)

𝑑𝑡
= −

𝑖

ℏ
[𝐻(𝑡), 𝜌(𝑡)] + 𝑝 ∑ (𝐿𝑖𝜌(𝑡)𝐿𝑖

†
−

1

2
{𝐿𝑖

†
𝐿𝑖𝜌(𝑡)}) ,

𝑖

 (A.1) 

where 𝐻 is noise Hamiltonian, which causes the X gate to be over-rotating, 𝑝 is the error 

rate and 𝐿𝑖  corresponds to error operators. With density matrixes obtained from the 

experiment, we need to solve the equation to thoroughly understand this quantum 

dynamics system by finding the noise Hamiltonian and error rate of the quantum 

dynamics. 

Assuming that the point we measure is dense enough, we discretize the equation and 

write the equation (To simplify the equation, we used 𝑅[𝜌]  to represent 

𝑝 ∑ (𝐿𝑖𝜌(𝑡)𝐿𝑖
†

−
1

2
{𝐿𝑖

†
𝐿𝑖𝜌(𝑡)})𝑖 ): 

𝜌(𝑡𝑛+1) − 𝜌(𝑡𝑛)

𝛥𝑡
= −𝑖[𝐻(𝑡𝑛), 𝜌(𝑡𝑛)] + 𝑅[𝜌(𝑡𝑛)], (A.2) 

where 𝑛  is the 𝑛𝑡ℎ  measurement density matrix that corresponds to the number of 

(𝑋)2 gates. And the fitting density matrix of the next step is: 

𝜌𝑓𝑖𝑡(𝑡𝑛+1) = 𝜌(𝑡𝑛) − 𝛥𝑡(𝑖[𝐻(𝑡𝑛), 𝜌(𝑡𝑛)] + 𝑅[𝜌(𝑡𝑛)]). (A.3) 

To solve the equation, we first present 𝐻(𝑡𝑛) and 𝜌(𝑡𝑛) as: 

𝜌(𝑡𝑛) =
1 + 𝑟𝑥(𝑡𝑛)𝜎𝑋 + 𝑟𝑦(𝑡𝑛)𝜎𝑌 + 𝑟𝑧(𝑡𝑛)𝜎𝑍

2
, (A.4) 
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where 𝜎𝑋,𝑌,𝑍 is Pauli matrix. 

𝐻(𝑡𝑛) = 𝐻𝑥(𝑡𝑛)𝜎𝑋 + 𝐻𝑌(𝑡𝑛)𝜎𝑌 + 𝐻𝑍(𝑡𝑛)𝜎𝑍. (A.5) 

The desired value of equation (A.3) is 𝑝 and 𝐻(𝑡𝑛). or 𝐻𝑥(𝑡𝑛) 𝐻𝑦(𝑡𝑛) and 𝐻𝑧(𝑡𝑛). 

Because we only consider the one qubit system, we first set the error rate 𝑝 = 0 and 

assume that 

𝜌(𝑡𝑛+1) − 𝜌(𝑡𝑛)

𝛥𝑡
= (

𝑏1 𝑏2 − 𝑏3𝑖
𝑏2 + 𝑏3𝑖 𝑏1

), (A.6) 

while 

−𝑖[𝐻(𝑡𝑛), 𝜌(𝑡𝑛)] = (
𝑏1 𝑏2 − 𝑏3𝑖

𝑏2 + 𝑏3𝑖 𝑏1
). (A.7) 

We can use equations (A.4) and (A.5) to extend −𝑖[𝐻(𝑡𝑛), 𝜌(𝑡𝑛)] and get 

−𝑖[𝐻(𝑡𝑛), 𝜌(𝑡𝑛)] = −𝑖{𝐻(𝑡𝑛)𝜌(𝑡𝑛) − 𝜌(𝑡𝑛)𝐻(𝑡𝑛)} 

=  (
(𝐻𝑥𝑟𝑦 − 𝐻𝑦𝑟𝑥) (𝐻𝑦𝑟𝑧 − 𝐻𝑧𝑟𝑦) − 𝑖(𝐻𝑧𝑟𝑥 − 𝐻𝑥𝑟𝑧)

(𝐻𝑦𝑟𝑧 − 𝐻𝑧𝑟𝑦) + 𝑖(𝐻𝑧𝑟𝑥 − 𝐻𝑥𝑟𝑧) (𝐻𝑥𝑟𝑦 − 𝐻𝑦𝑟𝑥)
), 

(A.8) 

In contrast to the element in equations (A.7) and (A.8), we know that 

(

𝑟𝑦 −𝑟𝑥 0

0 𝑟𝑧 −𝑟𝑦

−𝑟𝑧 0 𝑟𝑥

) = 𝐴 (A.9) 

𝐴 ∙ (

𝐻𝑥

𝐻𝑦

𝐻𝑧

) = (

𝑟𝑦 −𝑟𝑥 0

0 𝑟𝑧 −𝑟𝑦

−𝑟𝑧 0 𝑟𝑥

) ∙ (

𝐻𝑥

𝐻𝑦

𝐻𝑧

) = (

𝑏1

𝑏2

𝑏3

). (A.10) 

We can get the Hamiltonian 𝐻 by using A−1: 

(

𝐻𝑥

𝐻𝑦

𝐻𝑧

) = A−1 ∙ (

𝑏1

𝑏2

𝑏3

), (A.11) 

where A−1  is Pseudo Inverse Matrix. (A generalization of the inverse matrix when 



 

38 

 

the matrix is singular) Because we know the density matrix of each step, so after we get 

the Hamiltonian 𝐻(𝑡𝑛), we can find out the most appropriate error rate 𝑝 by minimizing 

the trace distance between 𝜌(𝑡𝑛+1) and 𝜌𝑓𝑖𝑡(𝑡𝑛+1) in equation (A.2). 

T(𝜌, 𝜌𝑓𝑖𝑡) = ||𝜌(𝑡𝑛+1) − 𝜌𝑓𝑖𝑡(𝑡𝑛+1)||/2 (A.11) 

 

Appendix B. Application details in the Crank-Nicolson method 

 For a (X)2 Bloch sphere dynamics (Figure B.1), we draw the vector length change 

in each step (Figure B.2). We can use a linear equation to fit the dynamics of vector length, 

which means that we can use only the initial value of the vector length to know the overall 

depolarizing effect. The linear equation can be written as  

𝑦(𝑡𝑛) = 𝑎𝑥(𝑡𝑛) + 𝑏, (B.1) 

Where 𝑎  corresponds to the depolarizing effect and b corresponds to the initial 

measurement error. 
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Figure B.1 Bloch sphere Dynamics for the (𝑋)2 gates. We initialize the qubit in four 

initial states and apply (X)2  gates from 0~300 times to analyze their behaviors. 

Experiments were performed on ibmq_paris. 

 

 

Figure B.2 Change of vector length at each step. We draw the change of vector length in 

Figure B.1 and finds that the correlation is linear (0th order).  

 

 With these properties, we can first normalize the Bloch vector from the 

experiment, search the best Hamiltonian with minimum trace distance mentioned in 

equation (A.11), and use the theory vector length value from the linear curve to rescale 

the vector length. We must use the Crank-Nicolson method to unitary propagate the 

system as the equation: 

𝜌(𝑡𝑛+1) − 𝜌(𝑡𝑛)

𝛥𝑡
=

1

2
(−𝑖[𝐻(𝑡𝑛), 𝜌(𝑡𝑛)] − 𝑖[𝐻(𝑡𝑛), 𝜌(𝑡𝑛+1)]), (B.2) 

By this method, we can share that the Hamiltonian information only represents the 

rotation noises from imperfect gates. In the Forward Euler method, Hamiltonian 

information might include the depolarizing noises that make the vector short. We draw 
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the trace distance at each step in different initial states to compare the two methods. We 

can find that the Crank-Nicolson method (black lines) has a smaller trace distance than 

the Forward Euler method (colored lines). In other words, the Crank-Nicolson method 

performs better in simulating the Bloch sphere dynamics. 

 

Figure B.2 Trace distance of different methods in different initial states. The black lines 

represent the results from the Crank-Nicolson method, while the colored lines represent 

the results from the Forward Euler method. 

 

Appendix C. Variance of the depolarizing rate of (𝐗𝐙𝐗𝐙𝐙)𝟐 and (𝐗)𝟐 

To discuss the variation of the decoherence noises in Bloch sphere dynamics under 

(XZXZZ)2  and (X)2  gates, and fit the dynamics with our model. Three consecutive 

experiments were done and fit independently to support statistical analysis. We then 

extract the depolarization rate to assess their difference across devices and days (), which 

could provide information about the amount of random noises introduced by the gate 

sequences. For the (XZXZZ)2  case, the depolarization rate shows a systematic trend 

across devices (Fastest: Manhattan, Slowest: Bogota). In the case of manhattan, the 
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depolarization rate exhibited large fluctuations and was not significantly different across 

days. In the case of paris and bogota, the deviation of noises was much smaller, suggesting 

the stability of the noises under (XZXZZ)2 were better than manhattan. Except on 12/27, 

the depolarization rates on three devices were all quantitively different from others. As 

for the case of (X)2 gates, the depolarization rates were all lower than that of (XZXZZ)2 

due to a smaller number of pulses per identity, the stabilities were also better in general.  

 

Figure C.1 Depolarization rates of (XZXZZ)2 and (X)2 on different devices and time. 

 

 


